In [4]:
import pandas as pd
data_files = [
    "ap_2010.csv",
    "class_size.csv",
    "demographics.csv",
    "graduation.csv",
    "hs_directory.csv",
    "sat_results.csv"
]
data = {}

for data_file in data_files:
    #remove .csv in the file name for the variable name
    df_name = data_file[:-4]
    data[df_name] = pd.read_csv('../resources/' + data_file)

print(data.keys())


dict_keys(['ap_2010', 'class_size', 'demographics', 'graduation', 'hs_directory', 'sat_results'])

In [5]:
#make copy pointer to the sat dataframe
sat = data['sat_results']

print(sat.head())

for key,value in data.items():
    print('Data set name {}'.format(key))
    print(value.head())


      DBN                                    SCHOOL NAME  \
0  01M292  HENRY STREET SCHOOL FOR INTERNATIONAL STUDIES   
1  01M448            UNIVERSITY NEIGHBORHOOD HIGH SCHOOL   
2  01M450                     EAST SIDE COMMUNITY SCHOOL   
3  01M458                      FORSYTH SATELLITE ACADEMY   
4  01M509                        MARTA VALLE HIGH SCHOOL   

  Num of SAT Test Takers SAT Critical Reading Avg. Score SAT Math Avg. Score  \
0                     29                             355                 404   
1                     91                             383                 423   
2                     70                             377                 402   
3                      7                             414                 401   
4                     44                             390                 433   

  SAT Writing Avg. Score  
0                    363  
1                    366  
2                    370  
3                    359  
4                    384  
Data set name ap_2010
      DBN                             SchoolName AP Test Takers   \
0  01M448           UNIVERSITY NEIGHBORHOOD H.S.              39   
1  01M450                 EAST SIDE COMMUNITY HS              19   
2  01M515                    LOWER EASTSIDE PREP              24   
3  01M539         NEW EXPLORATIONS SCI,TECH,MATH             255   
4  02M296  High School of Hospitality Management               s   

  Total Exams Taken Number of Exams with scores 3 4 or 5  
0                49                                   10  
1                21                                    s  
2                26                                   24  
3               377                                  191  
4                 s                                    s  
Data set name class_size
   CSD BOROUGH SCHOOL CODE                SCHOOL NAME GRADE  PROGRAM TYPE  \
0    1       M        M015  P.S. 015 Roberto Clemente     0K       GEN ED   
1    1       M        M015  P.S. 015 Roberto Clemente     0K          CTT   
2    1       M        M015  P.S. 015 Roberto Clemente     01       GEN ED   
3    1       M        M015  P.S. 015 Roberto Clemente     01          CTT   
4    1       M        M015  P.S. 015 Roberto Clemente     02       GEN ED   

  CORE SUBJECT (MS CORE and 9-12 ONLY) CORE COURSE (MS CORE and 9-12 ONLY)  \
0                                    -                                   -   
1                                    -                                   -   
2                                    -                                   -   
3                                    -                                   -   
4                                    -                                   -   

  SERVICE CATEGORY(K-9* ONLY)  NUMBER OF STUDENTS / SEATS FILLED  \
0                           -                               19.0   
1                           -                               21.0   
2                           -                               17.0   
3                           -                               17.0   
4                           -                               15.0   

   NUMBER OF SECTIONS  AVERAGE CLASS SIZE  SIZE OF SMALLEST CLASS  \
0                 1.0                19.0                    19.0   
1                 1.0                21.0                    21.0   
2                 1.0                17.0                    17.0   
3                 1.0                17.0                    17.0   
4                 1.0                15.0                    15.0   

   SIZE OF LARGEST CLASS DATA SOURCE  SCHOOLWIDE PUPIL-TEACHER RATIO  
0                   19.0         ATS                             NaN  
1                   21.0         ATS                             NaN  
2                   17.0         ATS                             NaN  
3                   17.0         ATS                             NaN  
4                   15.0         ATS                             NaN  
Data set name demographics
      DBN                       Name  schoolyear fl_percent  frl_percent  \
0  01M015  P.S. 015 ROBERTO CLEMENTE    20052006       89.4          NaN   
1  01M015  P.S. 015 ROBERTO CLEMENTE    20062007       89.4          NaN   
2  01M015  P.S. 015 ROBERTO CLEMENTE    20072008       89.4          NaN   
3  01M015  P.S. 015 ROBERTO CLEMENTE    20082009       89.4          NaN   
4  01M015  P.S. 015 ROBERTO CLEMENTE    20092010                    96.5   

   total_enrollment prek   k grade1 grade2    ...     black_num black_per  \
0               281   15  36     40     33    ...            74      26.3   
1               243   15  29     39     38    ...            68      28.0   
2               261   18  43     39     36    ...            77      29.5   
3               252   17  37     44     32    ...            75      29.8   
4               208   16  40     28     32    ...            67      32.2   

  hispanic_num hispanic_per white_num white_per male_num male_per female_num  \
0          189         67.3         5       1.8    158.0     56.2      123.0   
1          153         63.0         4       1.6    140.0     57.6      103.0   
2          157         60.2         7       2.7    143.0     54.8      118.0   
3          149         59.1         7       2.8    149.0     59.1      103.0   
4          118         56.7         6       2.9    124.0     59.6       84.0   

  female_per  
0       43.8  
1       42.4  
2       45.2  
3       40.9  
4       40.4  

[5 rows x 38 columns]
Data set name graduation
    Demographic     DBN                            School Name    Cohort  \
0  Total Cohort  01M292  HENRY STREET SCHOOL FOR INTERNATIONAL      2003   
1  Total Cohort  01M292  HENRY STREET SCHOOL FOR INTERNATIONAL      2004   
2  Total Cohort  01M292  HENRY STREET SCHOOL FOR INTERNATIONAL      2005   
3  Total Cohort  01M292  HENRY STREET SCHOOL FOR INTERNATIONAL      2006   
4  Total Cohort  01M292  HENRY STREET SCHOOL FOR INTERNATIONAL  2006 Aug   

   Total Cohort Total Grads - n Total Grads - % of cohort Total Regents - n  \
0             5               s                         s                 s   
1            55              37                     67.3%                17   
2            64              43                     67.2%                27   
3            78              43                     55.1%                36   
4            78              44                     56.4%                37   

  Total Regents - % of cohort Total Regents - % of grads  \
0                           s                          s   
1                       30.9%                      45.9%   
2                       42.2%                      62.8%   
3                       46.2%                      83.7%   
4                       47.4%                      84.1%   

             ...            Regents w/o Advanced - n  \
0            ...                                   s   
1            ...                                  17   
2            ...                                  27   
3            ...                                  36   
4            ...                                  37   

  Regents w/o Advanced - % of cohort Regents w/o Advanced - % of grads  \
0                                  s                                 s   
1                              30.9%                             45.9%   
2                              42.2%                             62.8%   
3                              46.2%                             83.7%   
4                              47.4%                             84.1%   

  Local - n Local - % of cohort   Local - % of grads Still Enrolled - n  \
0         s                   s                    s                  s   
1        20               36.4%                54.1%                 15   
2        16                 25%  37.200000000000003%                  9   
3         7                  9%                16.3%                 16   
4         7                  9%                15.9%                 15   

  Still Enrolled - % of cohort Dropped Out - n Dropped Out - % of cohort  
0                            s               s                         s  
1                        27.3%               3                      5.5%  
2                        14.1%               9                     14.1%  
3                        20.5%              11                     14.1%  
4                        19.2%              11                     14.1%  

[5 rows x 23 columns]
Data set name hs_directory
      dbn                                        school_name       boro  \
0  17K548                Brooklyn School for Music & Theatre   Brooklyn   
1  09X543                   High School for Violin and Dance      Bronx   
2  09X327        Comprehensive Model School Project M.S. 327      Bronx   
3  02M280     Manhattan Early College School for Advertising  Manhattan   
4  28Q680  Queens Gateway to Health Sciences Secondary Sc...     Queens   

  building_code    phone_number    fax_number grade_span_min  grade_span_max  \
0          K440    718-230-6250  718-230-6262              9              12   
1          X400    718-842-0687  718-589-9849              9              12   
2          X240    718-294-8111  718-294-8109              6              12   
3          M520  718-935-3477             NaN              9              10   
4          Q695    718-969-3155  718-969-3552              6              12   

  expgrade_span_min  expgrade_span_max  \
0               NaN                NaN   
1               NaN                NaN   
2               NaN                NaN   
3                 9               14.0   
4               NaN                NaN   

                         ...                          \
0                        ...                           
1                        ...                           
2                        ...                           
3                        ...                           
4                        ...                           

                                          priority02  \
0                    Then to New York City residents   
1  Then to New York City residents who attend an ...   
2  Then to Bronx students or residents who attend...   
3  Then to New York City residents who attend an ...   
4  Then to Districts 28 and 29 students or residents   

                                          priority03  \
0                                                NaN   
1                Then to Bronx students or residents   
2  Then to New York City residents who attend an ...   
3          Then to Manhattan students or residents     
4               Then to Queens students or residents   

                            priority04                       priority05  \
0                                  NaN                              NaN   
1      Then to New York City residents                              NaN   
2  Then to Bronx students or residents  Then to New York City residents   
3      Then to New York City residents                              NaN   
4      Then to New York City residents                              NaN   

  priority06  priority07 priority08  priority09 priority10  \
0        NaN         NaN        NaN         NaN        NaN   
1        NaN         NaN        NaN         NaN        NaN   
2        NaN         NaN        NaN         NaN        NaN   
3        NaN         NaN        NaN         NaN        NaN   
4        NaN         NaN        NaN         NaN        NaN   

                                          Location 1  
0  883 Classon Avenue\nBrooklyn, NY 11225\n(40.67...  
1  1110 Boston Road\nBronx, NY 10456\n(40.8276026...  
2  1501 Jerome Avenue\nBronx, NY 10452\n(40.84241...  
3  411 Pearl Street\nNew York, NY 10038\n(40.7106...  
4  160-20 Goethals Avenue\nJamaica, NY 11432\n(40...  

[5 rows x 58 columns]
Data set name sat_results
      DBN                                    SCHOOL NAME  \
0  01M292  HENRY STREET SCHOOL FOR INTERNATIONAL STUDIES   
1  01M448            UNIVERSITY NEIGHBORHOOD HIGH SCHOOL   
2  01M450                     EAST SIDE COMMUNITY SCHOOL   
3  01M458                      FORSYTH SATELLITE ACADEMY   
4  01M509                        MARTA VALLE HIGH SCHOOL   

  Num of SAT Test Takers SAT Critical Reading Avg. Score SAT Math Avg. Score  \
0                     29                             355                 404   
1                     91                             383                 423   
2                     70                             377                 402   
3                      7                             414                 401   
4                     44                             390                 433   

  SAT Writing Avg. Score  
0                    363  
1                    366  
2                    370  
3                    359  
4                    384  

In [6]:
all_survey = pd.read_csv('../resources//survey_all.txt', delimiter='\t',
                         encoding='windows-1252')

print(all_survey.iloc[0])
d75_survey = pd.read_csv('../resources/survey_d75.txt', delimiter='\t',
                        encoding='windows-1252')
print(d75_survey.iloc[0])

survey = pd.concat([all_survey,d75_survey],axis=0)

print(survey.iloc[0])


dbn                                    01M015
bn                                       M015
schoolname          P.S. 015 Roberto Clemente
d75                                         0
studentssurveyed                           No
highschool                                  0
schooltype                  Elementary School
rr_s                                      NaN
rr_t                                       88
rr_p                                       60
N_s                                       NaN
N_t                                        22
N_p                                        90
nr_s                                        0
nr_t                                       25
nr_p                                      150
saf_p_11                                  8.5
com_p_11                                  7.6
eng_p_11                                  7.5
aca_p_11                                  7.8
saf_t_11                                  7.5
com_t_11                                  7.8
eng_t_11                                  7.6
aca_t_11                                  7.9
saf_s_11                                  NaN
com_s_11                                  NaN
eng_s_11                                  NaN
aca_s_11                                  NaN
saf_tot_11                                  8
com_tot_11                                7.7
                              ...            
s_N_q13g_3                                NaN
s_N_q13g_4                                NaN
s_N_q14a_1                                NaN
s_N_q14a_2                                NaN
s_N_q14a_3                                NaN
s_N_q14a_4                                NaN
s_N_q14b_1                                NaN
s_N_q14b_2                                NaN
s_N_q14b_3                                NaN
s_N_q14b_4                                NaN
s_N_q14c_1                                NaN
s_N_q14c_2                                NaN
s_N_q14c_3                                NaN
s_N_q14c_4                                NaN
s_N_q14d_1                                NaN
s_N_q14d_2                                NaN
s_N_q14d_3                                NaN
s_N_q14d_4                                NaN
s_N_q14e_1                                NaN
s_N_q14e_2                                NaN
s_N_q14e_3                                NaN
s_N_q14e_4                                NaN
s_N_q14f_1                                NaN
s_N_q14f_2                                NaN
s_N_q14f_3                                NaN
s_N_q14f_4                                NaN
s_N_q14g_1                                NaN
s_N_q14g_2                                NaN
s_N_q14g_3                                NaN
s_N_q14g_4                                NaN
Name: 0, Length: 1942, dtype: object
dbn                                        75K004
bn                                           K004
schoolname                              P.S. K004
d75                                             1
studentssurveyed                              Yes
highschool                                      0
schooltype          District 75 Special Education
rr_s                                           38
rr_t                                           90
rr_p                                           72
N_s                                             8
N_t                                            81
N_p                                           244
nr_s                                           21
nr_t                                           90
nr_p                                          337
saf_p_11                                      9.1
com_p_11                                      8.6
eng_p_11                                      8.4
aca_p_11                                      8.5
saf_t_11                                      7.4
com_t_11                                      6.6
eng_t_11                                      6.4
aca_t_11                                      6.4
saf_s_11                                      7.6
com_s_11                                      5.8
eng_s_11                                      7.6
aca_s_11                                      6.3
saf_tot_11                                      8
com_tot_11                                      7
                                ...              
s_q13c_2                                       86
s_q13c_3                                        0
s_q13c_4                                        0
s_q13d_1                                        0
s_q13d_2                                       86
s_q13d_3                                       14
s_q13d_4                                        0
s_q13e_1                                        0
s_q13e_2                                      100
s_q13e_3                                        0
s_q13e_4                                        0
s_q13f_1                                        0
s_q13f_2                                      100
s_q13f_3                                        0
s_q13f_4                                        0
s_q13g_1                                        0
s_q13g_2                                      100
s_q13g_3                                        0
s_q13g_4                                        0
s_q14_1                                        71
s_q14_2                                        29
s_q14_3                                         0
s_q14_4                                         0
s_q14_5                                         0
s_q14_6                                         0
s_q14_7                                         0
s_q14_8                                         0
s_q14_9                                         0
s_q14_10                                        0
s_q14_11                                        0
Name: 0, Length: 1773, dtype: object
N_p               90
N_s              NaN
N_t               22
aca_p_11         7.8
aca_s_11         NaN
aca_t_11         7.9
aca_tot_11       7.9
bn              M015
com_p_11         7.6
com_s_11         NaN
com_t_11         7.8
com_tot_11       7.7
d75                0
dbn           01M015
eng_p_11         7.5
eng_s_11         NaN
eng_t_11         7.6
eng_tot_11       7.5
highschool         0
nr_p             150
nr_s               0
nr_t              25
p_N_q10a          56
p_N_q10a_1       NaN
p_N_q10a_2       NaN
p_N_q10a_3       NaN
p_N_q10a_4       NaN
p_N_q10a_5       NaN
p_N_q10b          30
p_N_q10b_1       NaN
               ...  
t_q7e_3            5
t_q7e_4            5
t_q7e_5            0
t_q7f            NaN
t_q7f_1          NaN
t_q7f_2          NaN
t_q7f_3          NaN
t_q7f_4          NaN
t_q7f_5          NaN
t_q8a              7
t_q8a_1           30
t_q8a_2           50
t_q8a_3           20
t_q8a_4            0
t_q8b              7
t_q8b_1           20
t_q8b_2           70
t_q8b_3           10
t_q8b_4            0
t_q8c            7.5
t_q8c_1           29
t_q8c_2           67
t_q8c_3            5
t_q8c_4            0
t_q9             NaN
t_q9_1             5
t_q9_2            14
t_q9_3            52
t_q9_4            24
t_q9_5             5
Name: 0, Length: 2773, dtype: object

In [7]:
survey["DBN"] = survey["dbn"]

survey_fields = [
    "DBN", 
    "rr_s", 
    "rr_t", 
    "rr_p", 
    "N_s", 
    "N_t", 
    "N_p", 
    "saf_p_11", 
    "com_p_11", 
    "eng_p_11", 
    "aca_p_11", 
    "saf_t_11", 
    "com_t_11", 
    "eng_t_11", 
    "aca_t_11", 
    "saf_s_11", 
    "com_s_11", 
    "eng_s_11", 
    "aca_s_11", 
    "saf_tot_11", 
    "com_tot_11", 
    "eng_tot_11", 
    "aca_tot_11",
]
survey = survey.loc[:,survey_fields]
data["survey"] = survey

print(survey.head())


      DBN  rr_s  rr_t  rr_p    N_s   N_t    N_p  saf_p_11  com_p_11  eng_p_11  \
0  01M015   NaN    88    60    NaN  22.0   90.0       8.5       7.6       7.5   
1  01M019   NaN   100    60    NaN  34.0  161.0       8.4       7.6       7.6   
2  01M020   NaN    88    73    NaN  42.0  367.0       8.9       8.3       8.3   
3  01M034  89.0    73    50  145.0  29.0  151.0       8.8       8.2       8.0   
4  01M063   NaN   100    60    NaN  23.0   90.0       8.7       7.9       8.1   

      ...      eng_t_11  aca_t_11  saf_s_11  com_s_11  eng_s_11  aca_s_11  \
0     ...           7.6       7.9       NaN       NaN       NaN       NaN   
1     ...           8.9       9.1       NaN       NaN       NaN       NaN   
2     ...           6.8       7.5       NaN       NaN       NaN       NaN   
3     ...           6.8       7.8       6.2       5.9       6.5       7.4   
4     ...           7.8       8.1       NaN       NaN       NaN       NaN   

   saf_tot_11  com_tot_11  eng_tot_11  aca_tot_11  
0         8.0         7.7         7.5         7.9  
1         8.5         8.1         8.2         8.4  
2         8.2         7.3         7.5         8.0  
3         7.3         6.7         7.1         7.9  
4         8.5         7.6         7.9         8.0  

[5 rows x 23 columns]

In [9]:
def padded_csd(csd):
    csd_str = str(csd)
    if len(csd_str) == 1:
        csd_str = csd_str.zfill(2)
    return csd_str

def genDBN(row):
    return row['padded_csd'] + row['SCHOOL CODE']

hs_dir = data['hs_directory']

hs_dir['DBN'] = hs_dir['dbn']


class_size = data['class_size']
class_size['padded_csd'] = class_size['CSD'].apply(padded_csd)
class_size['DBN'] = class_size.apply(genDBN, axis=1)

print(class_size['DBN'].iloc[0:5])


0    01M015
1    01M015
2    01M015
3    01M015
4    01M015
Name: DBN, dtype: object

In [10]:
sat_results = data['sat_results']
string_to_num_cols = ['SAT Math Avg. Score', 'SAT Critical Reading Avg. Score','SAT Writing Avg. Score']
sat_results['sat_score'] = [0]*len(sat_results)
for col in string_to_num_cols:
    sat_results[col] = pd.to_numeric(sat_results[col],errors='coerce')
    sat_results['sat_score'] = sat_results['sat_score'] + sat_results[col]

print(sat_results[string_to_num_cols].iloc[0])
print(sat_results['sat_score'].iloc[0])


SAT Math Avg. Score                404.0
SAT Critical Reading Avg. Score    355.0
SAT Writing Avg. Score             363.0
Name: 0, dtype: float64
1122.0

In [11]:
import re

def extract_lat(data):
    match = re.findall('\(.+\)', data)
    #splits the lat and long and remove first char '(' and last char from lat which is comma(,) and returns the string
    lat_long = match[0]
    return lat_long.split(' ')[0][1:-1]

hs_directory = data['hs_directory']

hs_directory['lat'] = hs_directory['Location 1'].apply(extract_lat)

print(hs_directory['lat'].iloc[0:5])


0     40.67029890700047
1      40.8276026690005
2    40.842414068000494
3     40.71067947100045
4    40.718810094000446
Name: lat, dtype: object

In [12]:
def extract_longitude(data):
    match = re.findall('\(.+\)', data)
    lat_long = match[0]
    #split lat and long and remove last char ')' from long then return it
    return lat_long.split(' ')[1][:-1]

hs_directory = data['hs_directory']

hs_directory['lon'] = hs_directory['Location 1'].apply(extract_longitude)
lat_lon = ['lat', 'lon']
for l in lat_lon:
    hs_directory[l] = pd.to_numeric(hs_directory[l], errors='coerce')

print(hs_directory.iloc[0:5])


      dbn                                        school_name       boro  \
0  17K548                Brooklyn School for Music & Theatre   Brooklyn   
1  09X543                   High School for Violin and Dance      Bronx   
2  09X327        Comprehensive Model School Project M.S. 327      Bronx   
3  02M280     Manhattan Early College School for Advertising  Manhattan   
4  28Q680  Queens Gateway to Health Sciences Secondary Sc...     Queens   

  building_code    phone_number    fax_number grade_span_min  grade_span_max  \
0          K440    718-230-6250  718-230-6262              9              12   
1          X400    718-842-0687  718-589-9849              9              12   
2          X240    718-294-8111  718-294-8109              6              12   
3          M520  718-935-3477             NaN              9              10   
4          Q695    718-969-3155  718-969-3552              6              12   

  expgrade_span_min  expgrade_span_max    ...      \
0               NaN                NaN    ...       
1               NaN                NaN    ...       
2               NaN                NaN    ...       
3                 9               14.0    ...       
4               NaN                NaN    ...       

                        priority05 priority06 priority07 priority08  \
0                              NaN        NaN        NaN        NaN   
1                              NaN        NaN        NaN        NaN   
2  Then to New York City residents        NaN        NaN        NaN   
3                              NaN        NaN        NaN        NaN   
4                              NaN        NaN        NaN        NaN   

  priority09  priority10                                         Location 1  \
0        NaN         NaN  883 Classon Avenue\nBrooklyn, NY 11225\n(40.67...   
1        NaN         NaN  1110 Boston Road\nBronx, NY 10456\n(40.8276026...   
2        NaN         NaN  1501 Jerome Avenue\nBronx, NY 10452\n(40.84241...   
3        NaN         NaN  411 Pearl Street\nNew York, NY 10038\n(40.7106...   
4        NaN         NaN  160-20 Goethals Avenue\nJamaica, NY 11432\n(40...   

      DBN        lat        lon  
0  17K548  40.670299 -73.961648  
1  09X543  40.827603 -73.904475  
2  09X327  40.842414 -73.916162  
3  02M280  40.710679 -74.000807  
4  28Q680  40.718810 -73.806500  

[5 rows x 61 columns]

In [13]:
class_size = data['class_size']
#drop rows where grade is different than '09-12' and program type diff than 'GEN ED'
program_type = class_size['PROGRAM TYPE'] != 'GEN ED'
grade = class_size['GRADE '] != '09-12'
program_type_grade = (program_type | grade)
class_size.drop(class_size[program_type_grade].index, inplace=True)

print(class_size.iloc[0:5])


     CSD BOROUGH SCHOOL CODE                                    SCHOOL NAME  \
225    1       M        M292  Henry Street School for International Studies   
226    1       M        M292  Henry Street School for International Studies   
227    1       M        M292  Henry Street School for International Studies   
228    1       M        M292  Henry Street School for International Studies   
229    1       M        M292  Henry Street School for International Studies   

    GRADE  PROGRAM TYPE CORE SUBJECT (MS CORE and 9-12 ONLY)  \
225  09-12       GEN ED                              ENGLISH   
226  09-12       GEN ED                              ENGLISH   
227  09-12       GEN ED                              ENGLISH   
228  09-12       GEN ED                              ENGLISH   
229  09-12       GEN ED                                 MATH   

    CORE COURSE (MS CORE and 9-12 ONLY) SERVICE CATEGORY(K-9* ONLY)  \
225                           English 9                           -   
226                          English 10                           -   
227                          English 11                           -   
228                          English 12                           -   
229                  Integrated Algebra                           -   

     NUMBER OF STUDENTS / SEATS FILLED  NUMBER OF SECTIONS  \
225                               63.0                 3.0   
226                               79.0                 3.0   
227                               38.0                 2.0   
228                               69.0                 3.0   
229                               53.0                 3.0   

     AVERAGE CLASS SIZE  SIZE OF SMALLEST CLASS  SIZE OF LARGEST CLASS  \
225                21.0                    19.0                   25.0   
226                26.3                    24.0                   31.0   
227                19.0                    16.0                   22.0   
228                23.0                    13.0                   30.0   
229                17.7                    16.0                   21.0   

    DATA SOURCE  SCHOOLWIDE PUPIL-TEACHER RATIO padded_csd     DBN  
225       STARS                             NaN         01  01M292  
226       STARS                             NaN         01  01M292  
227       STARS                             NaN         01  01M292  
228       STARS                             NaN         01  01M292  
229       STARS                             NaN         01  01M292  

In [ ]: