In [1]:
%load_ext autoreload
%autoreload 2
import utils
reload(utils)
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import pathnet
import pandas as pd
In [3]:
ids = [29, 31]
X, sizes = utils.load_images('/root/sharedfolder/360Salient/', ids)
In [14]:
utils.paths_for_images('/root/sharedfolder/360Salient/', ids)
Out[14]:
In [13]:
i, s = utils.load_image("/root/sharedfolder/360Salient/Images/P29.jpg")
s
Out[13]:
In [23]:
utils.get_duration_fixation()
Out[23]:
In [9]:
print sizes
print sizes[1]
plt.imshow(X[1].transpose((1,2,0)).astype(np.uint8))
Out[9]:
In [ ]:
In [53]:
import matplotlib.image as mpimg
img = mpimg.imread("/root/sharedfolder/360Salient/Images/P29.jpg")
In [56]:
size = (img.shape[0], img.shape[1])
size
Out[56]:
In [10]:
img.shape
Out[10]:
In [19]:
plt.imshow(img[0].transpose((1,2,0)).astype(np.uint8))
Out[19]:
In [58]:
p = pathnet.predict("/root/sharedfolder/360Salient/Images/P29.jpg")
In [65]:
print pd.DataFrame(p[30:100])
In [ ]:
In [ ]:
def view(fix, frame):
x,y = map(list, zip(*fix))
plt.imshow(frame)
plt.scatter(x,y)
plt.plot(x,y, '-or', markersize=25, markevery=1000)
In [24]:
pathnet.predict_and_save('/root/sharedfolder/360Salient/', [29, 31], '/root/sharedfolder/360Salient/results/v4/')
Out[24]: