In [31]:
import dicom
from matplotlib import pyplot as plt, cm
import numpy as np
import cv2
%matplotlib inline
In [32]:
plan0 = dicom.read_file("../../dicom/ProstateX-0000/1.3.6.1.4.1.14519.5.2.1.7311.5101.158323547117540061132729905711/1.3.6.1.4.1.14519.5.2.1.7311.5101.100000082759836574166944843130/000000.dcm")
In [33]:
plan0.BodyPartExamined
Out[33]:
In [34]:
plan0.ImagePositionPatient
Out[34]:
In [30]:
plan0.Columns
Out[30]:
In [27]:
rsImage = cv2.resize(plan0.pixel_array, (64,64))
In [28]:
plt.figure(figsize=(10,10));
plt.subplot(1,2,1);
plt.imshow(plan0.pixel_array, cmap=cm.bone);
plt.title('Original')
plt.subplot(1,2,2);
plt.imshow(rsImage, cmap=cm.bone);
plt.title('Resized');
In [10]:
plan1 = dicom.read_file("../../dicom/ProstateX-0000/1.3.6.1.4.1.14519.5.2.1.7311.5101.158323547117540061132729905711/1.3.6.1.4.1.14519.5.2.1.7311.5101.100000082759836574166944843130/000001.dcm")
In [11]:
plt.imshow(plan1.pixel_array, cmap=cm.bone);
In [7]:
plan1.ImageType
Out[7]:
In [13]:
Out[13]:
In [14]:
plan1.SliceThickness
Out[14]:
In [6]:
plan2 = dicom.read_file("/Volumes/homes/users/anthony.reina/dicom"
"/Lung CT/stage1/00cba091fa4ad62cc3200a657aeb957e/"
"0a291d1b12b86213d813e3796f14b329.dcm")
In [7]:
plt.imshow(plan2.pixel_array, cmap=cm.bone);
In [16]:
plan2.PatientID
Out[16]:
In [3]:
plan3 = dicom.read_file("/Volumes/homes/users/anthony.reina/dicom/Lung CT/stage1/00cba091fa4ad62cc3200a657aeb957e/034673134cbef5ea15ff9e0c8090500a.dcm")
In [4]:
plt.imshow(plan3.pixel_array, cmap=cm.bone)
Out[4]:
In [12]:
np.shape(plan1.pixel_array)
Out[12]:
In [16]:
plan3.Rows
Out[16]:
In [ ]: