In [1]:
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sklearn
In [2]:
gdp_per_capita = pd.read_csv("https://raw.githubusercontent.com/ageron/handson-ml/master/datasets/lifesat/gdp_per_capita.csv",thousands=',',delimiter='\t',
encoding='latin1', na_values="n/a")
In [3]:
gdp_per_capita.rename(columns={"2015": "GDP per capita"}, inplace=True)
gdp_per_capita.set_index("Country", inplace=True)
gdp_per_capita = gdp_per_capita[['GDP per capita','Estimates Start After']]
gdp_per_capita.head(2)
Out[3]:
In [4]:
gdp_per_capita.sort_values(by='GDP per capita', ascending=False).head(3)
Out[4]:
In [5]:
# remove extra line
gdp_per_capita = gdp_per_capita.drop('International Monetary Fund, World Economic Outlook Database, April 2016')
In [6]:
gdp_per_capita.sort_values(by='GDP per capita', ascending=False).tail(5)
Out[6]: