In [7]:
from data.complex.PCAD_main import nonLinearPCA, linearPCA
from data.complex.SolverNL import SolverDiff, lambdify, solver
from data.complex.complex import (
examples,
polynomial,
plotSymbolicEq,
plotInComplexNumbers,
makeToComplexForm
)
from data.finance.addins.neuralNetTestModified import NNtrainer, NeuralNetForward
from data.finance.addins.mlToFinance1 import LinkQuandl
from data.finance.addins.main import (
plotSleepStudy,
generateSampleData,
testNeuralNetForward,
testLogic )
import matplotlib.pyplot as plt
import numpy as np
In [8]:
lq = LinkQuandl()
testLogic(lq)
# Neural network
x = NeuralNetForward.x/np.amax(NeuralNetForward.x, axis = 0)
y = NeuralNetForward.y/100
testX = NeuralNetForward.testX/np.amax(NeuralNetForward.testX, axis = 0)
testY = NeuralNetForward.testY/100
plotSleepStudy(x, y)
plotSleepStudy(testX, testY)
allInputs, hoursSleep, hoursStudy = generateSampleData (sampleSize = 100, max = 10, min = 0)
nn = NeuralNetForward(x = x, y = y)
#testNeuralNetForward(nn, x, y)
In [5]:
t, v0, g, dydt = SolverDiff.symbolicMathTest()
v = lambdify([t, v0, g], dydt)
roots = SolverDiff.solverUsingDiff()
f = SolverDiff.taylorSeries()
roots
Out[5]:
In [9]:
solver()
In [10]:
linearPCA()
In [11]:
nonLinearPCA()
In [26]:
examples()
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
circ = plt.Circle((0.5, 0.5), radius=0.5, edgecolor='b', facecolor='None')
ax.add_patch(circ)
plt.show()
polynomial()
plotSymbolicEq()
a = np.arange(5) + 1j*np.arange(6,11)
plotInComplexNumbers(a)
f = np.logspace(-2,4,10)
y = makeToComplexForm(f)
In [ ]: