Image Classification

In this project, you'll classify images from the CIFAR-10 dataset. The dataset consists of airplanes, dogs, cats, and other objects. You'll preprocess the images, then train a convolutional neural network on all the samples. The images need to be normalized and the labels need to be one-hot encoded. You'll get to apply what you learned and build a convolutional, max pooling, dropout, and fully connected layers. At the end, you'll get to see your neural network's predictions on the sample images.

Get the Data

Run the following cell to download the CIFAR-10 dataset for python.


In [1]:
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
from urllib.request import urlretrieve
from os.path import isfile, isdir
from tqdm import tqdm
import problem_unittests as tests
import tarfile

cifar10_dataset_folder_path = 'cifar-10-batches-py'

# Use Floyd's cifar-10 dataset if present
floyd_cifar10_location = '/input/cifar-10/python.tar.gz'
if isfile(floyd_cifar10_location):
    tar_gz_path = floyd_cifar10_location
else:
    tar_gz_path = 'cifar-10-python.tar.gz'

class DLProgress(tqdm):
    last_block = 0

    def hook(self, block_num=1, block_size=1, total_size=None):
        self.total = total_size
        self.update((block_num - self.last_block) * block_size)
        self.last_block = block_num

if not isfile(tar_gz_path):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar:
        urlretrieve(
            'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
            tar_gz_path,
            pbar.hook)

if not isdir(cifar10_dataset_folder_path):
    with tarfile.open(tar_gz_path) as tar:
        tar.extractall()
        tar.close()


tests.test_folder_path(cifar10_dataset_folder_path)


All files found!

Explore the Data

The dataset is broken into batches to prevent your machine from running out of memory. The CIFAR-10 dataset consists of 5 batches, named data_batch_1, data_batch_2, etc.. Each batch contains the labels and images that are one of the following:

  • airplane
  • automobile
  • bird
  • cat
  • deer
  • dog
  • frog
  • horse
  • ship
  • truck

Understanding a dataset is part of making predictions on the data. Play around with the code cell below by changing the batch_id and sample_id. The batch_id is the id for a batch (1-5). The sample_id is the id for a image and label pair in the batch.

Ask yourself "What are all possible labels?", "What is the range of values for the image data?", "Are the labels in order or random?". Answers to questions like these will help you preprocess the data and end up with better predictions.


In [2]:
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import helper
import numpy as np

# Explore the dataset
batch_id = 1
sample_id = 5
helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id)


Stats of batch 1:
Samples: 10000
Label Counts: {0: 1005, 1: 974, 2: 1032, 3: 1016, 4: 999, 5: 937, 6: 1030, 7: 1001, 8: 1025, 9: 981}
First 20 Labels: [6, 9, 9, 4, 1, 1, 2, 7, 8, 3, 4, 7, 7, 2, 9, 9, 9, 3, 2, 6]

Example of Image 5:
Image - Min Value: 0 Max Value: 252
Image - Shape: (32, 32, 3)
Label - Label Id: 1 Name: automobile

Implement Preprocess Functions

Normalize

In the cell below, implement the normalize function to take in image data, x, and return it as a normalized Numpy array. The values should be in the range of 0 to 1, inclusive. The return object should be the same shape as x.


In [66]:
def normalize(x):
    """
    Normalize a list of sample image data in the range of 0 to 1
    : x: List of image data.  The image shape is (32, 32, 3)
    : return: Numpy array of normalize data
    """
    # TODO: Implement Function

    return np.array(x/255.0)


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_normalize(normalize)


Tests Passed

One-hot encode

Just like the previous code cell, you'll be implementing a function for preprocessing. This time, you'll implement the one_hot_encode function. The input, x, are a list of labels. Implement the function to return the list of labels as One-Hot encoded Numpy array. The possible values for labels are 0 to 9. The one-hot encoding function should return the same encoding for each value between each call to one_hot_encode. Make sure to save the map of encodings outside the function.

Hint: Don't reinvent the wheel.


In [67]:
one_hot_encoded = np.eye(10,dtype=np.float32)
def one_hot_encode(x):
    """
    One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
    : x: List of sample Labels
    : return: Numpy array of one-hot encoded labels
    """
    # TODO: Implement Function
    return one_hot_encoded[x]


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_one_hot_encode(one_hot_encode)


Tests Passed

Randomize Data

As you saw from exploring the data above, the order of the samples are randomized. It doesn't hurt to randomize it again, but you don't need to for this dataset.

Preprocess all the data and save it

Running the code cell below will preprocess all the CIFAR-10 data and save it to file. The code below also uses 10% of the training data for validation.


In [68]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
# Preprocess Training, Validation, and Testing Data
helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode)


---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-68-2e43b03e04f3> in <module>()
      3 """
      4 # Preprocess Training, Validation, and Testing Data
----> 5 helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode)

NameError: name 'cifar10_dataset_folder_path' is not defined

Check Point

This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk.


In [69]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import pickle
import problem_unittests as tests
import helper

# Load the Preprocessed Validation data
valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb'))

Build the network

For the neural network, you'll build each layer into a function. Most of the code you've seen has been outside of functions. To test your code more thoroughly, we require that you put each layer in a function. This allows us to give you better feedback and test for simple mistakes using our unittests before you submit your project.

Note: If you're finding it hard to dedicate enough time for this course each week, we've provided a small shortcut to this part of the project. In the next couple of problems, you'll have the option to use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages to build each layer, except the layers you build in the "Convolutional and Max Pooling Layer" section. TF Layers is similar to Keras's and TFLearn's abstraction to layers, so it's easy to pickup.

However, if you would like to get the most out of this course, try to solve all the problems without using anything from the TF Layers packages. You can still use classes from other packages that happen to have the same name as ones you find in TF Layers! For example, instead of using the TF Layers version of the conv2d class, tf.layers.conv2d, you would want to use the TF Neural Network version of conv2d, tf.nn.conv2d.

Let's begin!

Input

The neural network needs to read the image data, one-hot encoded labels, and dropout keep probability. Implement the following functions

  • Implement neural_net_image_input
    • Return a TF Placeholder
    • Set the shape using image_shape with batch size set to None.
    • Name the TensorFlow placeholder "x" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_label_input
    • Return a TF Placeholder
    • Set the shape using n_classes with batch size set to None.
    • Name the TensorFlow placeholder "y" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_keep_prob_input
    • Return a TF Placeholder for dropout keep probability.
    • Name the TensorFlow placeholder "keep_prob" using the TensorFlow name parameter in the TF Placeholder.

These names will be used at the end of the project to load your saved model.

Note: None for shapes in TensorFlow allow for a dynamic size.


In [70]:
import tensorflow as tf
import numpy as np

def neural_net_image_input(image_shape):
    """
    Return a Tensor for a batch of image input
    : image_shape: Shape of the images
    : return: Tensor for image input.
    """
    return tf.placeholder(tf.float32, (None,*image_shape), name='x')
    


def neural_net_label_input(n_classes):
    """
    Return a Tensor for a batch of label input
    : n_classes: Number of classes
    : return: Tensor for label input.
    """
    return tf.placeholder(tf.float32, [None, n_classes], name='y')
    


def neural_net_keep_prob_input():
    """
    Return a Tensor for keep probability
    : return: Tensor for keep probability.
    """
    return tf.placeholder(tf.float32, name='keep_prob')
   


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tf.reset_default_graph()
tests.test_nn_image_inputs(neural_net_image_input)
tests.test_nn_label_inputs(neural_net_label_input)
tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input)


Image Input Tests Passed.
Label Input Tests Passed.
Keep Prob Tests Passed.

Convolution and Max Pooling Layer

Convolution layers have a lot of success with images. For this code cell, you should implement the function conv2d_maxpool to apply convolution then max pooling:

  • Create the weight and bias using conv_ksize, conv_num_outputs and the shape of x_tensor.
  • Apply a convolution to x_tensor using weight and conv_strides.
    • We recommend you use same padding, but you're welcome to use any padding.
  • Add bias
  • Add a nonlinear activation to the convolution.
  • Apply Max Pooling using pool_ksize and pool_strides.
    • We recommend you use same padding, but you're welcome to use any padding.

Note: You can't use TensorFlow Layers or TensorFlow Layers (contrib) for this layer, but you can still use TensorFlow's Neural Network package. You may still use the shortcut option for all the other layers.


In [71]:
def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides):
    """
    Apply convolution then max pooling to x_tensor
    :param x_tensor: TensorFlow Tensor
    :param conv_num_outputs: Number of outputs for the convolutional layer
    :param conv_ksize: kernal size 2-D Tuple for the convolutional layer
    :param conv_strides: Stride 2-D Tuple for convolution
    :param pool_ksize: kernal size 2-D Tuple for pool
    :param pool_strides: Stride 2-D Tuple for pool
    : return: A tensor that represents convolution and max pooling of x_tensor
    """
    w = tf.Variable(tf.truncated_normal([*conv_ksize, x_tensor.get_shape().as_list()[-1], conv_num_outputs],stddev=0.01,dtype=tf.float32, mean=0.0))
    bias = tf.Variable(tf.zeros([conv_num_outputs]))
    conv = tf.nn.conv2d(x_tensor, w, [1, *conv_strides,1], padding='SAME')
    conv = tf.nn.bias_add(conv, bias)
    conv = tf.nn.relu(conv)
    conv = tf.nn.max_pool(conv, ksize=[1,*pool_ksize,1], strides= [1, *pool_strides,1], padding='SAME')
    return conv 


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_con_pool(conv2d_maxpool)


Tests Passed

Flatten Layer

Implement the flatten function to change the dimension of x_tensor from a 4-D tensor to a 2-D tensor. The output should be the shape (Batch Size, Flattened Image Size). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.


In [72]:
def flatten(x_tensor):
    """
    Flatten x_tensor to (Batch Size, Flattened Image Size)
    : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions.
    : return: A tensor of size (Batch Size, Flattened Image Size).
    """
    # TODO: Implement Function
    shape = x_tensor.get_shape().as_list()
    image_size = np.prod(shape[1:])
    return tf.reshape(x_tensor, [-1,image_size])


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_flatten(flatten)


Tests Passed

Fully-Connected Layer

Implement the fully_conn function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.


In [73]:
def fully_conn(x_tensor, num_outputs):
    """
    Apply a fully connected layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    dimension = x_tensor.get_shape().as_list()[1]
    weights = tf.Variable(tf.truncated_normal([dimension, num_outputs],stddev=0.01, dtype=tf.float32, mean=0.0))
    bias = tf.Variable(tf.zeros([num_outputs]))
    fully_connected = tf.add(tf.matmul(x_tensor,weights),bias)
    fully_connected = tf.nn.relu(fully_connected)
    return fully_connected


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_fully_conn(fully_conn)


Tests Passed

Output Layer

Implement the output function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.

Note: Activation, softmax, or cross entropy should not be applied to this.


In [103]:
def output(x_tensor, num_outputs):
    """
    Apply a output layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    dimension = x_tensor.get_shape().as_list()[1]
    weights = tf.Variable(tf.truncated_normal([dimension, num_outputs], stddev=0.01, dtype=tf.float32, mean=0.0))
    bias = tf.Variable(tf.zeros([num_outputs]))
    out = tf.add(tf.matmul(x_tensor,weights),bias)
    return out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_output(output)


Tests Passed

Create Convolutional Model

Implement the function conv_net to create a convolutional neural network model. The function takes in a batch of images, x, and outputs logits. Use the layers you created above to create this model:

  • Apply 1, 2, or 3 Convolution and Max Pool layers
  • Apply a Flatten Layer
  • Apply 1, 2, or 3 Fully Connected Layers
  • Apply an Output Layer
  • Return the output
  • Apply TensorFlow's Dropout to one or more layers in the model using keep_prob.

In [189]:
def conv_net(x, keep_prob):
    """
    Create a convolutional neural network model
    : x: Placeholder tensor that holds image data.
    : keep_prob: Placeholder tensor that hold dropout keep probability.
    : return: Tensor that represents logits
    """
    # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers
    #    Play around with different number of outputs, kernel size and stride
    # Function Definition from Above:
    #    conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides)
#     x_tensor = conv2d_maxpool(x, 32, (2,2), (2,2), (2,2), (1,1))
    x_tensor = conv2d_maxpool(x, 64, (3,3), (2,2), (2,2), (1,1))
    x_tensor = conv2d_maxpool(x_tensor, 128, (3,3), (2,2), (2,2), (1,1))
#     x_tensor = conv2d_maxpool(x_tensor, 320, (3,3), (2,2), (2,2), (1,1))

#     x_tensor = conv2d_maxpool(x_tensor, 128, (3,3), (2,2), (2,2), (1,1))

    # TODO: Apply a Flatten Layer
    # Function Definition from Above:
    x_tensor = flatten(x_tensor)
    
    # TODO: Apply 1, 2, or 3 Fully Connected Layers
    #    Play around with different number of outputs
    # Function Definition from Above:
   
    x_tensor = fully_conn(x_tensor, 1024)
    x_tensor = tf.nn.dropout(x_tensor, keep_prob)
    x_tensor = fully_conn(x_tensor, 512)
    x_tensor = tf.nn.dropout(x_tensor, keep_prob)
    x_tensor = fully_conn(x_tensor, 100)
    x_tensor = tf.nn.dropout(x_tensor, keep_prob)

    # TODO: Apply an Output Layer
    #    Set this to the number of classes
    # Function Definition from Above:
    out = output(x_tensor, 10)    
    return out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""

##############################
## Build the Neural Network ##
##############################

# Remove previous weights, bias, inputs, etc..
tf.reset_default_graph()

# Inputs
x = neural_net_image_input((32, 32, 3))
y = neural_net_label_input(10)
keep_prob = neural_net_keep_prob_input()

# Model
logits = conv_net(x, keep_prob)

# Name logits Tensor, so that is can be loaded from disk after training
logits = tf.identity(logits, name='logits')

# Loss and Optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)

# Accuracy
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')

tests.test_conv_net(conv_net)


Neural Network Built!

Train the Neural Network

Single Optimization

Implement the function train_neural_network to do a single optimization. The optimization should use optimizer to optimize in session with a feed_dict of the following:

  • x for image input
  • y for labels
  • keep_prob for keep probability for dropout

This function will be called for each batch, so tf.global_variables_initializer() has already been called.

Note: Nothing needs to be returned. This function is only optimizing the neural network.


In [190]:
def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch):
    """
    Optimize the session on a batch of images and labels
    : session: Current TensorFlow session
    : optimizer: TensorFlow optimizer function
    : keep_probability: keep probability
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    """
    # TODO: Implement Function
    
    session.run(optimizer, feed_dict={
        x: feature_batch,
        y: label_batch,
        keep_prob: keep_probability
    })
    pass


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_train_nn(train_neural_network)


Tests Passed

Show Stats

Implement the function print_stats to print loss and validation accuracy. Use the global variables valid_features and valid_labels to calculate validation accuracy. Use a keep probability of 1.0 to calculate the loss and validation accuracy.


In [191]:
def print_stats(session, feature_batch, label_batch, cost, accuracy):
    """
    Print information about loss and validation accuracy
    : session: Current TensorFlow session
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    : cost: TensorFlow cost function
    : accuracy: TensorFlow accuracy function
    """
    # TODO: Implement Function
    loss = session.run(cost, feed_dict= {
        x: feature_batch,
        y: label_batch,
        keep_prob: 1
    })
    valid_accuracy = session.run(accuracy, feed_dict = {
        x: valid_features,
        y: valid_labels,
        keep_prob: 1
    })
    print('Loss: {:>10.4f} Validation Accuracy: {:1.6f}'.format(loss,valid_accuracy))
    pass

Hyperparameters

Tune the following parameters:

  • Set epochs to the number of iterations until the network stops learning or start overfitting
  • Set batch_size to the highest number that your machine has memory for. Most people set them to common sizes of memory:
    • 64
    • 128
    • 256
    • ...
  • Set keep_probability to the probability of keeping a node using dropout

In [192]:
# TODO: Tune Parameters
epochs = 100
batch_size = 128
keep_probability = 0.75

Train on a Single CIFAR-10 Batch

Instead of training the neural network on all the CIFAR-10 batches of data, let's use a single batch. This should save time while you iterate on the model to get a better accuracy. Once the final validation accuracy is 50% or greater, run the model on all the data in the next section.


In [193]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
print('Checking the Training on a Single Batch...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        batch_i = 1
        for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
            train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
        print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
        print_stats(sess, batch_features, batch_labels, cost, accuracy)


Checking the Training on a Single Batch...
Epoch  1, CIFAR-10 Batch 1:  Loss:     2.1618 Validation Accuracy: 0.165600
Epoch  2, CIFAR-10 Batch 1:  Loss:     2.0810 Validation Accuracy: 0.208600
Epoch  3, CIFAR-10 Batch 1:  Loss:     2.0017 Validation Accuracy: 0.287000
Epoch  4, CIFAR-10 Batch 1:  Loss:     1.9461 Validation Accuracy: 0.315400
Epoch  5, CIFAR-10 Batch 1:  Loss:     1.8169 Validation Accuracy: 0.353200
Epoch  6, CIFAR-10 Batch 1:  Loss:     1.7048 Validation Accuracy: 0.394000
Epoch  7, CIFAR-10 Batch 1:  Loss:     1.5609 Validation Accuracy: 0.419200
Epoch  8, CIFAR-10 Batch 1:  Loss:     1.4276 Validation Accuracy: 0.445800
Epoch  9, CIFAR-10 Batch 1:  Loss:     1.3459 Validation Accuracy: 0.448600
Epoch 10, CIFAR-10 Batch 1:  Loss:     1.2434 Validation Accuracy: 0.475400
Epoch 11, CIFAR-10 Batch 1:  Loss:     1.1419 Validation Accuracy: 0.496800
Epoch 12, CIFAR-10 Batch 1:  Loss:     0.9721 Validation Accuracy: 0.490800
Epoch 13, CIFAR-10 Batch 1:  Loss:     0.8777 Validation Accuracy: 0.502000
Epoch 14, CIFAR-10 Batch 1:  Loss:     0.8154 Validation Accuracy: 0.518800
Epoch 15, CIFAR-10 Batch 1:  Loss:     0.7484 Validation Accuracy: 0.527200
Epoch 16, CIFAR-10 Batch 1:  Loss:     0.6339 Validation Accuracy: 0.537600
Epoch 17, CIFAR-10 Batch 1:  Loss:     0.5512 Validation Accuracy: 0.535400
Epoch 18, CIFAR-10 Batch 1:  Loss:     0.5010 Validation Accuracy: 0.540200
Epoch 19, CIFAR-10 Batch 1:  Loss:     0.4621 Validation Accuracy: 0.542400
Epoch 20, CIFAR-10 Batch 1:  Loss:     0.4153 Validation Accuracy: 0.554400
Epoch 21, CIFAR-10 Batch 1:  Loss:     0.3701 Validation Accuracy: 0.549200
Epoch 22, CIFAR-10 Batch 1:  Loss:     0.3241 Validation Accuracy: 0.554800
Epoch 23, CIFAR-10 Batch 1:  Loss:     0.3362 Validation Accuracy: 0.537000
Epoch 24, CIFAR-10 Batch 1:  Loss:     0.2860 Validation Accuracy: 0.540400
Epoch 25, CIFAR-10 Batch 1:  Loss:     0.1950 Validation Accuracy: 0.544800
Epoch 26, CIFAR-10 Batch 1:  Loss:     0.1566 Validation Accuracy: 0.530600
Epoch 27, CIFAR-10 Batch 1:  Loss:     0.1313 Validation Accuracy: 0.550600
Epoch 28, CIFAR-10 Batch 1:  Loss:     0.1397 Validation Accuracy: 0.546600
Epoch 29, CIFAR-10 Batch 1:  Loss:     0.1032 Validation Accuracy: 0.570800
Epoch 30, CIFAR-10 Batch 1:  Loss:     0.1133 Validation Accuracy: 0.561600
Epoch 31, CIFAR-10 Batch 1:  Loss:     0.0869 Validation Accuracy: 0.555400
Epoch 32, CIFAR-10 Batch 1:  Loss:     0.0745 Validation Accuracy: 0.559200
Epoch 33, CIFAR-10 Batch 1:  Loss:     0.0626 Validation Accuracy: 0.560000
Epoch 34, CIFAR-10 Batch 1:  Loss:     0.0423 Validation Accuracy: 0.564000
Epoch 35, CIFAR-10 Batch 1:  Loss:     0.0349 Validation Accuracy: 0.565400
Epoch 36, CIFAR-10 Batch 1:  Loss:     0.0308 Validation Accuracy: 0.560000
Epoch 37, CIFAR-10 Batch 1:  Loss:     0.0362 Validation Accuracy: 0.562800
Epoch 38, CIFAR-10 Batch 1:  Loss:     0.0202 Validation Accuracy: 0.572600
Epoch 39, CIFAR-10 Batch 1:  Loss:     0.0346 Validation Accuracy: 0.558200
Epoch 40, CIFAR-10 Batch 1:  Loss:     0.0254 Validation Accuracy: 0.556400
Epoch 41, CIFAR-10 Batch 1:  Loss:     0.0148 Validation Accuracy: 0.570400
Epoch 42, CIFAR-10 Batch 1:  Loss:     0.0087 Validation Accuracy: 0.560000
Epoch 43, CIFAR-10 Batch 1:  Loss:     0.0085 Validation Accuracy: 0.564800
Epoch 44, CIFAR-10 Batch 1:  Loss:     0.0118 Validation Accuracy: 0.567200
Epoch 45, CIFAR-10 Batch 1:  Loss:     0.0142 Validation Accuracy: 0.567000
Epoch 46, CIFAR-10 Batch 1:  Loss:     0.0109 Validation Accuracy: 0.559200
Epoch 47, CIFAR-10 Batch 1:  Loss:     0.0085 Validation Accuracy: 0.545600
Epoch 48, CIFAR-10 Batch 1:  Loss:     0.0087 Validation Accuracy: 0.560200
Epoch 49, CIFAR-10 Batch 1:  Loss:     0.0063 Validation Accuracy: 0.558800
Epoch 50, CIFAR-10 Batch 1:  Loss:     0.0040 Validation Accuracy: 0.564400
Epoch 51, CIFAR-10 Batch 1:  Loss:     0.0030 Validation Accuracy: 0.557200
Epoch 52, CIFAR-10 Batch 1:  Loss:     0.0046 Validation Accuracy: 0.566200
Epoch 53, CIFAR-10 Batch 1:  Loss:     0.0029 Validation Accuracy: 0.573000
Epoch 54, CIFAR-10 Batch 1:  Loss:     0.0020 Validation Accuracy: 0.572600
Epoch 55, CIFAR-10 Batch 1:  Loss:     0.0039 Validation Accuracy: 0.560200
Epoch 56, CIFAR-10 Batch 1:  Loss:     0.0016 Validation Accuracy: 0.558400
Epoch 57, CIFAR-10 Batch 1:  Loss:     0.0016 Validation Accuracy: 0.572000
Epoch 58, CIFAR-10 Batch 1:  Loss:     0.0011 Validation Accuracy: 0.569200
Epoch 59, CIFAR-10 Batch 1:  Loss:     0.0009 Validation Accuracy: 0.568400
Epoch 60, CIFAR-10 Batch 1:  Loss:     0.0035 Validation Accuracy: 0.558000
Epoch 61, CIFAR-10 Batch 1:  Loss:     0.0047 Validation Accuracy: 0.548600
Epoch 62, CIFAR-10 Batch 1:  Loss:     0.0027 Validation Accuracy: 0.564600
Epoch 63, CIFAR-10 Batch 1:  Loss:     0.0012 Validation Accuracy: 0.572400
Epoch 64, CIFAR-10 Batch 1:  Loss:     0.0012 Validation Accuracy: 0.574800
Epoch 65, CIFAR-10 Batch 1:  Loss:     0.0012 Validation Accuracy: 0.570400
Epoch 66, CIFAR-10 Batch 1:  Loss:     0.0009 Validation Accuracy: 0.566200
Epoch 67, CIFAR-10 Batch 1:  Loss:     0.0007 Validation Accuracy: 0.576800
Epoch 68, CIFAR-10 Batch 1:  Loss:     0.0005 Validation Accuracy: 0.576800
Epoch 69, CIFAR-10 Batch 1:  Loss:     0.0026 Validation Accuracy: 0.562200
Epoch 70, CIFAR-10 Batch 1:  Loss:     0.0004 Validation Accuracy: 0.568200
Epoch 71, CIFAR-10 Batch 1:  Loss:     0.0010 Validation Accuracy: 0.569200
Epoch 72, CIFAR-10 Batch 1:  Loss:     0.0006 Validation Accuracy: 0.559200
Epoch 73, CIFAR-10 Batch 1:  Loss:     0.0007 Validation Accuracy: 0.567400
Epoch 74, CIFAR-10 Batch 1:  Loss:     0.0008 Validation Accuracy: 0.565800
Epoch 75, CIFAR-10 Batch 1:  Loss:     0.0013 Validation Accuracy: 0.560600
Epoch 76, CIFAR-10 Batch 1:  Loss:     0.0008 Validation Accuracy: 0.572200
Epoch 77, CIFAR-10 Batch 1:  Loss:     0.0003 Validation Accuracy: 0.564600
Epoch 78, CIFAR-10 Batch 1:  Loss:     0.0003 Validation Accuracy: 0.567800
Epoch 79, CIFAR-10 Batch 1:  Loss:     0.0002 Validation Accuracy: 0.564000
Epoch 80, CIFAR-10 Batch 1:  Loss:     0.0010 Validation Accuracy: 0.561400
Epoch 81, CIFAR-10 Batch 1:  Loss:     0.0004 Validation Accuracy: 0.570000
Epoch 82, CIFAR-10 Batch 1:  Loss:     0.0002 Validation Accuracy: 0.562400
Epoch 83, CIFAR-10 Batch 1:  Loss:     0.0003 Validation Accuracy: 0.559600
Epoch 84, CIFAR-10 Batch 1:  Loss:     0.0007 Validation Accuracy: 0.553600
Epoch 85, CIFAR-10 Batch 1:  Loss:     0.0001 Validation Accuracy: 0.561400
Epoch 86, CIFAR-10 Batch 1:  Loss:     0.0004 Validation Accuracy: 0.557600
Epoch 87, CIFAR-10 Batch 1:  Loss:     0.0001 Validation Accuracy: 0.560400
Epoch 88, CIFAR-10 Batch 1:  Loss:     0.0006 Validation Accuracy: 0.579400
Epoch 89, CIFAR-10 Batch 1:  Loss:     0.0002 Validation Accuracy: 0.563200
Epoch 90, CIFAR-10 Batch 1:  Loss:     0.0002 Validation Accuracy: 0.564400
Epoch 91, CIFAR-10 Batch 1:  Loss:     0.0010 Validation Accuracy: 0.550000
Epoch 92, CIFAR-10 Batch 1:  Loss:     0.0001 Validation Accuracy: 0.562200
Epoch 93, CIFAR-10 Batch 1:  Loss:     0.0002 Validation Accuracy: 0.558800
Epoch 94, CIFAR-10 Batch 1:  Loss:     0.0001 Validation Accuracy: 0.565400
Epoch 95, CIFAR-10 Batch 1:  Loss:     0.0004 Validation Accuracy: 0.560200
Epoch 96, CIFAR-10 Batch 1:  Loss:     0.0002 Validation Accuracy: 0.561800
Epoch 97, CIFAR-10 Batch 1:  Loss:     0.0003 Validation Accuracy: 0.568000
Epoch 98, CIFAR-10 Batch 1:  Loss:     0.0000 Validation Accuracy: 0.567200
Epoch 99, CIFAR-10 Batch 1:  Loss:     0.0001 Validation Accuracy: 0.573600
Epoch 100, CIFAR-10 Batch 1:  Loss:     0.0003 Validation Accuracy: 0.564200

Fully Train the Model

Now that you got a good accuracy with a single CIFAR-10 batch, try it with all five batches.


In [194]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
save_model_path = './image_classification'

print('Training...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        # Loop over all batches
        n_batches = 5
        for batch_i in range(1, n_batches + 1):
            for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
                train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
            print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
            print_stats(sess, batch_features, batch_labels, cost, accuracy)
            
    # Save Model
    saver = tf.train.Saver()
    save_path = saver.save(sess, save_model_path)


Training...
Epoch  1, CIFAR-10 Batch 1:  Loss:     2.1652 Validation Accuracy: 0.169600
Epoch  1, CIFAR-10 Batch 2:  Loss:     2.0342 Validation Accuracy: 0.208400
Epoch  1, CIFAR-10 Batch 3:  Loss:     1.7120 Validation Accuracy: 0.243400
Epoch  1, CIFAR-10 Batch 4:  Loss:     1.8127 Validation Accuracy: 0.308000
Epoch  1, CIFAR-10 Batch 5:  Loss:     1.6747 Validation Accuracy: 0.315400
Epoch  2, CIFAR-10 Batch 1:  Loss:     1.8125 Validation Accuracy: 0.356400
Epoch  2, CIFAR-10 Batch 2:  Loss:     1.7170 Validation Accuracy: 0.377400
Epoch  2, CIFAR-10 Batch 3:  Loss:     1.2788 Validation Accuracy: 0.430800
Epoch  2, CIFAR-10 Batch 4:  Loss:     1.5719 Validation Accuracy: 0.434400
Epoch  2, CIFAR-10 Batch 5:  Loss:     1.3690 Validation Accuracy: 0.507600
Epoch  3, CIFAR-10 Batch 1:  Loss:     1.4868 Validation Accuracy: 0.486000
Epoch  3, CIFAR-10 Batch 2:  Loss:     1.2774 Validation Accuracy: 0.516000
Epoch  3, CIFAR-10 Batch 3:  Loss:     1.0538 Validation Accuracy: 0.519600
Epoch  3, CIFAR-10 Batch 4:  Loss:     1.2122 Validation Accuracy: 0.524800
Epoch  3, CIFAR-10 Batch 5:  Loss:     1.0942 Validation Accuracy: 0.567600
Epoch  4, CIFAR-10 Batch 1:  Loss:     1.3360 Validation Accuracy: 0.572000
Epoch  4, CIFAR-10 Batch 2:  Loss:     1.0327 Validation Accuracy: 0.559200
Epoch  4, CIFAR-10 Batch 3:  Loss:     0.8490 Validation Accuracy: 0.570800
Epoch  4, CIFAR-10 Batch 4:  Loss:     1.0721 Validation Accuracy: 0.587400
Epoch  4, CIFAR-10 Batch 5:  Loss:     0.9326 Validation Accuracy: 0.591400
Epoch  5, CIFAR-10 Batch 1:  Loss:     1.1147 Validation Accuracy: 0.607600
Epoch  5, CIFAR-10 Batch 2:  Loss:     0.9229 Validation Accuracy: 0.614200
Epoch  5, CIFAR-10 Batch 3:  Loss:     0.6557 Validation Accuracy: 0.616600
Epoch  5, CIFAR-10 Batch 4:  Loss:     0.9224 Validation Accuracy: 0.616400
Epoch  5, CIFAR-10 Batch 5:  Loss:     0.8006 Validation Accuracy: 0.615000
Epoch  6, CIFAR-10 Batch 1:  Loss:     0.9003 Validation Accuracy: 0.612600
Epoch  6, CIFAR-10 Batch 2:  Loss:     0.7503 Validation Accuracy: 0.637400
Epoch  6, CIFAR-10 Batch 3:  Loss:     0.5191 Validation Accuracy: 0.637800
Epoch  6, CIFAR-10 Batch 4:  Loss:     0.6825 Validation Accuracy: 0.630000
Epoch  6, CIFAR-10 Batch 5:  Loss:     0.6478 Validation Accuracy: 0.630200
Epoch  7, CIFAR-10 Batch 1:  Loss:     0.7137 Validation Accuracy: 0.648600
Epoch  7, CIFAR-10 Batch 2:  Loss:     0.6214 Validation Accuracy: 0.642600
Epoch  7, CIFAR-10 Batch 3:  Loss:     0.4506 Validation Accuracy: 0.642600
Epoch  7, CIFAR-10 Batch 4:  Loss:     0.6091 Validation Accuracy: 0.656200
Epoch  7, CIFAR-10 Batch 5:  Loss:     0.5132 Validation Accuracy: 0.639800
Epoch  8, CIFAR-10 Batch 1:  Loss:     0.5989 Validation Accuracy: 0.647000
Epoch  8, CIFAR-10 Batch 2:  Loss:     0.5382 Validation Accuracy: 0.658400
Epoch  8, CIFAR-10 Batch 3:  Loss:     0.3220 Validation Accuracy: 0.660200
Epoch  8, CIFAR-10 Batch 4:  Loss:     0.4453 Validation Accuracy: 0.648800
Epoch  8, CIFAR-10 Batch 5:  Loss:     0.4478 Validation Accuracy: 0.646400
Epoch  9, CIFAR-10 Batch 1:  Loss:     0.4434 Validation Accuracy: 0.665200
Epoch  9, CIFAR-10 Batch 2:  Loss:     0.4452 Validation Accuracy: 0.658400
Epoch  9, CIFAR-10 Batch 3:  Loss:     0.3372 Validation Accuracy: 0.662000
Epoch  9, CIFAR-10 Batch 4:  Loss:     0.3152 Validation Accuracy: 0.666000
Epoch  9, CIFAR-10 Batch 5:  Loss:     0.2990 Validation Accuracy: 0.663600
Epoch 10, CIFAR-10 Batch 1:  Loss:     0.4204 Validation Accuracy: 0.683800
Epoch 10, CIFAR-10 Batch 2:  Loss:     0.3602 Validation Accuracy: 0.681400
Epoch 10, CIFAR-10 Batch 3:  Loss:     0.2418 Validation Accuracy: 0.671600
Epoch 10, CIFAR-10 Batch 4:  Loss:     0.2737 Validation Accuracy: 0.667600
Epoch 10, CIFAR-10 Batch 5:  Loss:     0.2119 Validation Accuracy: 0.679600
Epoch 11, CIFAR-10 Batch 1:  Loss:     0.3538 Validation Accuracy: 0.685800
Epoch 11, CIFAR-10 Batch 2:  Loss:     0.2896 Validation Accuracy: 0.672200
Epoch 11, CIFAR-10 Batch 3:  Loss:     0.2516 Validation Accuracy: 0.664600
Epoch 11, CIFAR-10 Batch 4:  Loss:     0.2114 Validation Accuracy: 0.673400
Epoch 11, CIFAR-10 Batch 5:  Loss:     0.1429 Validation Accuracy: 0.677400
Epoch 12, CIFAR-10 Batch 1:  Loss:     0.3077 Validation Accuracy: 0.690800
Epoch 12, CIFAR-10 Batch 2:  Loss:     0.2863 Validation Accuracy: 0.666800
Epoch 12, CIFAR-10 Batch 3:  Loss:     0.1961 Validation Accuracy: 0.672200
Epoch 12, CIFAR-10 Batch 4:  Loss:     0.1765 Validation Accuracy: 0.673400
Epoch 12, CIFAR-10 Batch 5:  Loss:     0.1420 Validation Accuracy: 0.685800
Epoch 13, CIFAR-10 Batch 1:  Loss:     0.2061 Validation Accuracy: 0.682000
Epoch 13, CIFAR-10 Batch 2:  Loss:     0.2072 Validation Accuracy: 0.680000
Epoch 13, CIFAR-10 Batch 3:  Loss:     0.1468 Validation Accuracy: 0.654800
Epoch 13, CIFAR-10 Batch 4:  Loss:     0.1727 Validation Accuracy: 0.684000
Epoch 13, CIFAR-10 Batch 5:  Loss:     0.0873 Validation Accuracy: 0.684400
Epoch 14, CIFAR-10 Batch 1:  Loss:     0.1889 Validation Accuracy: 0.686800
Epoch 14, CIFAR-10 Batch 2:  Loss:     0.1389 Validation Accuracy: 0.690800
Epoch 14, CIFAR-10 Batch 3:  Loss:     0.1447 Validation Accuracy: 0.672400
Epoch 14, CIFAR-10 Batch 4:  Loss:     0.1661 Validation Accuracy: 0.668800
Epoch 14, CIFAR-10 Batch 5:  Loss:     0.0627 Validation Accuracy: 0.684000
Epoch 15, CIFAR-10 Batch 1:  Loss:     0.1677 Validation Accuracy: 0.682600
Epoch 15, CIFAR-10 Batch 2:  Loss:     0.1099 Validation Accuracy: 0.678000
Epoch 15, CIFAR-10 Batch 3:  Loss:     0.1362 Validation Accuracy: 0.661200
Epoch 15, CIFAR-10 Batch 4:  Loss:     0.1136 Validation Accuracy: 0.673400
Epoch 15, CIFAR-10 Batch 5:  Loss:     0.0720 Validation Accuracy: 0.692000
Epoch 16, CIFAR-10 Batch 1:  Loss:     0.1619 Validation Accuracy: 0.680600
Epoch 16, CIFAR-10 Batch 2:  Loss:     0.1235 Validation Accuracy: 0.683400
Epoch 16, CIFAR-10 Batch 3:  Loss:     0.1136 Validation Accuracy: 0.661000
Epoch 16, CIFAR-10 Batch 4:  Loss:     0.0887 Validation Accuracy: 0.679000
Epoch 16, CIFAR-10 Batch 5:  Loss:     0.0542 Validation Accuracy: 0.691400
Epoch 17, CIFAR-10 Batch 1:  Loss:     0.1487 Validation Accuracy: 0.693800
Epoch 17, CIFAR-10 Batch 2:  Loss:     0.0830 Validation Accuracy: 0.674600
Epoch 17, CIFAR-10 Batch 3:  Loss:     0.1103 Validation Accuracy: 0.675000
Epoch 17, CIFAR-10 Batch 4:  Loss:     0.0938 Validation Accuracy: 0.684000
Epoch 17, CIFAR-10 Batch 5:  Loss:     0.0470 Validation Accuracy: 0.688400
Epoch 18, CIFAR-10 Batch 1:  Loss:     0.0950 Validation Accuracy: 0.689600
Epoch 18, CIFAR-10 Batch 2:  Loss:     0.0795 Validation Accuracy: 0.669600
Epoch 18, CIFAR-10 Batch 3:  Loss:     0.0676 Validation Accuracy: 0.682000
Epoch 18, CIFAR-10 Batch 4:  Loss:     0.0549 Validation Accuracy: 0.674000
Epoch 18, CIFAR-10 Batch 5:  Loss:     0.0346 Validation Accuracy: 0.681200
Epoch 19, CIFAR-10 Batch 1:  Loss:     0.0896 Validation Accuracy: 0.666800
Epoch 19, CIFAR-10 Batch 2:  Loss:     0.0762 Validation Accuracy: 0.659800
Epoch 19, CIFAR-10 Batch 3:  Loss:     0.0600 Validation Accuracy: 0.676600
Epoch 19, CIFAR-10 Batch 4:  Loss:     0.0459 Validation Accuracy: 0.675600
Epoch 19, CIFAR-10 Batch 5:  Loss:     0.0340 Validation Accuracy: 0.691600
Epoch 20, CIFAR-10 Batch 1:  Loss:     0.0666 Validation Accuracy: 0.662400
Epoch 20, CIFAR-10 Batch 2:  Loss:     0.0530 Validation Accuracy: 0.684800
Epoch 20, CIFAR-10 Batch 3:  Loss:     0.0383 Validation Accuracy: 0.681200
Epoch 20, CIFAR-10 Batch 4:  Loss:     0.0330 Validation Accuracy: 0.682200
Epoch 20, CIFAR-10 Batch 5:  Loss:     0.0206 Validation Accuracy: 0.691200
Epoch 21, CIFAR-10 Batch 1:  Loss:     0.0504 Validation Accuracy: 0.675200
Epoch 21, CIFAR-10 Batch 2:  Loss:     0.0456 Validation Accuracy: 0.685000
Epoch 21, CIFAR-10 Batch 3:  Loss:     0.0790 Validation Accuracy: 0.680600
Epoch 21, CIFAR-10 Batch 4:  Loss:     0.0649 Validation Accuracy: 0.672000
Epoch 21, CIFAR-10 Batch 5:  Loss:     0.0252 Validation Accuracy: 0.689200
Epoch 22, CIFAR-10 Batch 1:  Loss:     0.0597 Validation Accuracy: 0.677200
Epoch 22, CIFAR-10 Batch 2:  Loss:     0.0338 Validation Accuracy: 0.684600
Epoch 22, CIFAR-10 Batch 3:  Loss:     0.0402 Validation Accuracy: 0.691200
Epoch 22, CIFAR-10 Batch 4:  Loss:     0.0204 Validation Accuracy: 0.673800
Epoch 22, CIFAR-10 Batch 5:  Loss:     0.0145 Validation Accuracy: 0.697800
Epoch 23, CIFAR-10 Batch 1:  Loss:     0.0388 Validation Accuracy: 0.676200
Epoch 23, CIFAR-10 Batch 2:  Loss:     0.0375 Validation Accuracy: 0.687000
Epoch 23, CIFAR-10 Batch 3:  Loss:     0.0367 Validation Accuracy: 0.674800
Epoch 23, CIFAR-10 Batch 4:  Loss:     0.0292 Validation Accuracy: 0.679200
Epoch 23, CIFAR-10 Batch 5:  Loss:     0.0142 Validation Accuracy: 0.685200
Epoch 24, CIFAR-10 Batch 1:  Loss:     0.0452 Validation Accuracy: 0.677800
Epoch 24, CIFAR-10 Batch 2:  Loss:     0.0248 Validation Accuracy: 0.685600
Epoch 24, CIFAR-10 Batch 3:  Loss:     0.0304 Validation Accuracy: 0.678800
Epoch 24, CIFAR-10 Batch 4:  Loss:     0.0114 Validation Accuracy: 0.679400
Epoch 24, CIFAR-10 Batch 5:  Loss:     0.0184 Validation Accuracy: 0.683400
Epoch 25, CIFAR-10 Batch 1:  Loss:     0.0382 Validation Accuracy: 0.674000
Epoch 25, CIFAR-10 Batch 2:  Loss:     0.0353 Validation Accuracy: 0.680200
Epoch 25, CIFAR-10 Batch 3:  Loss:     0.0216 Validation Accuracy: 0.671400
Epoch 25, CIFAR-10 Batch 4:  Loss:     0.0290 Validation Accuracy: 0.666000
Epoch 25, CIFAR-10 Batch 5:  Loss:     0.0082 Validation Accuracy: 0.670600
Epoch 26, CIFAR-10 Batch 1:  Loss:     0.0165 Validation Accuracy: 0.686200
Epoch 26, CIFAR-10 Batch 2:  Loss:     0.0664 Validation Accuracy: 0.679800
Epoch 26, CIFAR-10 Batch 3:  Loss:     0.0340 Validation Accuracy: 0.672600
Epoch 26, CIFAR-10 Batch 4:  Loss:     0.0212 Validation Accuracy: 0.662600
Epoch 26, CIFAR-10 Batch 5:  Loss:     0.0167 Validation Accuracy: 0.682600
Epoch 27, CIFAR-10 Batch 1:  Loss:     0.0156 Validation Accuracy: 0.677600
Epoch 27, CIFAR-10 Batch 2:  Loss:     0.0237 Validation Accuracy: 0.681600
Epoch 27, CIFAR-10 Batch 3:  Loss:     0.0058 Validation Accuracy: 0.677600
Epoch 27, CIFAR-10 Batch 4:  Loss:     0.0128 Validation Accuracy: 0.681200
Epoch 27, CIFAR-10 Batch 5:  Loss:     0.0065 Validation Accuracy: 0.682600
Epoch 28, CIFAR-10 Batch 1:  Loss:     0.0077 Validation Accuracy: 0.685200
Epoch 28, CIFAR-10 Batch 2:  Loss:     0.0159 Validation Accuracy: 0.689400
Epoch 28, CIFAR-10 Batch 3:  Loss:     0.0167 Validation Accuracy: 0.687200
Epoch 28, CIFAR-10 Batch 4:  Loss:     0.0040 Validation Accuracy: 0.676800
Epoch 28, CIFAR-10 Batch 5:  Loss:     0.0100 Validation Accuracy: 0.678000
Epoch 29, CIFAR-10 Batch 1:  Loss:     0.0480 Validation Accuracy: 0.679200
Epoch 29, CIFAR-10 Batch 2:  Loss:     0.0230 Validation Accuracy: 0.689000
Epoch 29, CIFAR-10 Batch 3:  Loss:     0.0063 Validation Accuracy: 0.684400
Epoch 29, CIFAR-10 Batch 4:  Loss:     0.0061 Validation Accuracy: 0.672800
Epoch 29, CIFAR-10 Batch 5:  Loss:     0.0039 Validation Accuracy: 0.690400
Epoch 30, CIFAR-10 Batch 1:  Loss:     0.0175 Validation Accuracy: 0.686000
Epoch 30, CIFAR-10 Batch 2:  Loss:     0.0094 Validation Accuracy: 0.680800
Epoch 30, CIFAR-10 Batch 3:  Loss:     0.0048 Validation Accuracy: 0.680000
Epoch 30, CIFAR-10 Batch 4:  Loss:     0.0082 Validation Accuracy: 0.674200
Epoch 30, CIFAR-10 Batch 5:  Loss:     0.0061 Validation Accuracy: 0.683400
Epoch 31, CIFAR-10 Batch 1:  Loss:     0.0159 Validation Accuracy: 0.678600
Epoch 31, CIFAR-10 Batch 2:  Loss:     0.0041 Validation Accuracy: 0.677200
Epoch 31, CIFAR-10 Batch 3:  Loss:     0.0976 Validation Accuracy: 0.668000
Epoch 31, CIFAR-10 Batch 4:  Loss:     0.0108 Validation Accuracy: 0.668800
Epoch 31, CIFAR-10 Batch 5:  Loss:     0.0031 Validation Accuracy: 0.680600
Epoch 32, CIFAR-10 Batch 1:  Loss:     0.0128 Validation Accuracy: 0.679600
Epoch 32, CIFAR-10 Batch 2:  Loss:     0.0065 Validation Accuracy: 0.684400
Epoch 32, CIFAR-10 Batch 3:  Loss:     0.0041 Validation Accuracy: 0.682800
Epoch 32, CIFAR-10 Batch 4:  Loss:     0.0104 Validation Accuracy: 0.669000
Epoch 32, CIFAR-10 Batch 5:  Loss:     0.0232 Validation Accuracy: 0.687400
Epoch 33, CIFAR-10 Batch 1:  Loss:     0.0129 Validation Accuracy: 0.677600
Epoch 33, CIFAR-10 Batch 2:  Loss:     0.0108 Validation Accuracy: 0.682600
Epoch 33, CIFAR-10 Batch 3:  Loss:     0.0030 Validation Accuracy: 0.678800
Epoch 33, CIFAR-10 Batch 4:  Loss:     0.0107 Validation Accuracy: 0.670600
Epoch 33, CIFAR-10 Batch 5:  Loss:     0.0055 Validation Accuracy: 0.676000
Epoch 34, CIFAR-10 Batch 1:  Loss:     0.0085 Validation Accuracy: 0.674000
Epoch 34, CIFAR-10 Batch 2:  Loss:     0.0130 Validation Accuracy: 0.663800
Epoch 34, CIFAR-10 Batch 3:  Loss:     0.0036 Validation Accuracy: 0.692200
Epoch 34, CIFAR-10 Batch 4:  Loss:     0.0089 Validation Accuracy: 0.668600
Epoch 34, CIFAR-10 Batch 5:  Loss:     0.0015 Validation Accuracy: 0.689800
Epoch 35, CIFAR-10 Batch 1:  Loss:     0.0032 Validation Accuracy: 0.689200
Epoch 35, CIFAR-10 Batch 2:  Loss:     0.0649 Validation Accuracy: 0.667200
Epoch 35, CIFAR-10 Batch 3:  Loss:     0.0053 Validation Accuracy: 0.679200
Epoch 35, CIFAR-10 Batch 4:  Loss:     0.0082 Validation Accuracy: 0.669600
Epoch 35, CIFAR-10 Batch 5:  Loss:     0.0080 Validation Accuracy: 0.688400
Epoch 36, CIFAR-10 Batch 1:  Loss:     0.0125 Validation Accuracy: 0.677400
Epoch 36, CIFAR-10 Batch 2:  Loss:     0.0117 Validation Accuracy: 0.688400
Epoch 36, CIFAR-10 Batch 3:  Loss:     0.0021 Validation Accuracy: 0.687600
Epoch 36, CIFAR-10 Batch 4:  Loss:     0.0083 Validation Accuracy: 0.681200
Epoch 36, CIFAR-10 Batch 5:  Loss:     0.0007 Validation Accuracy: 0.688000
Epoch 37, CIFAR-10 Batch 1:  Loss:     0.0101 Validation Accuracy: 0.678800
Epoch 37, CIFAR-10 Batch 2:  Loss:     0.0045 Validation Accuracy: 0.689200
Epoch 37, CIFAR-10 Batch 3:  Loss:     0.0008 Validation Accuracy: 0.682200
Epoch 37, CIFAR-10 Batch 4:  Loss:     0.0055 Validation Accuracy: 0.683400
Epoch 37, CIFAR-10 Batch 5:  Loss:     0.0023 Validation Accuracy: 0.691000
Epoch 38, CIFAR-10 Batch 1:  Loss:     0.0046 Validation Accuracy: 0.679800
Epoch 38, CIFAR-10 Batch 2:  Loss:     0.0067 Validation Accuracy: 0.689200
Epoch 38, CIFAR-10 Batch 3:  Loss:     0.0012 Validation Accuracy: 0.695400
Epoch 38, CIFAR-10 Batch 4:  Loss:     0.0017 Validation Accuracy: 0.676200
Epoch 38, CIFAR-10 Batch 5:  Loss:     0.0039 Validation Accuracy: 0.683600
Epoch 39, CIFAR-10 Batch 1:  Loss:     0.0136 Validation Accuracy: 0.679000
Epoch 39, CIFAR-10 Batch 2:  Loss:     0.0053 Validation Accuracy: 0.693000
Epoch 39, CIFAR-10 Batch 3:  Loss:     0.0012 Validation Accuracy: 0.685800
Epoch 39, CIFAR-10 Batch 4:  Loss:     0.0020 Validation Accuracy: 0.695400
Epoch 39, CIFAR-10 Batch 5:  Loss:     0.0019 Validation Accuracy: 0.688400
Epoch 40, CIFAR-10 Batch 1:  Loss:     0.0031 Validation Accuracy: 0.682600
Epoch 40, CIFAR-10 Batch 2:  Loss:     0.0027 Validation Accuracy: 0.699600
Epoch 40, CIFAR-10 Batch 3:  Loss:     0.0036 Validation Accuracy: 0.689400
Epoch 40, CIFAR-10 Batch 4:  Loss:     0.0010 Validation Accuracy: 0.688600
Epoch 40, CIFAR-10 Batch 5:  Loss:     0.0024 Validation Accuracy: 0.696000
Epoch 41, CIFAR-10 Batch 1:  Loss:     0.0020 Validation Accuracy: 0.680000
Epoch 41, CIFAR-10 Batch 2:  Loss:     0.0035 Validation Accuracy: 0.687400
Epoch 41, CIFAR-10 Batch 3:  Loss:     0.0008 Validation Accuracy: 0.696200
Epoch 41, CIFAR-10 Batch 4:  Loss:     0.0030 Validation Accuracy: 0.674600
Epoch 41, CIFAR-10 Batch 5:  Loss:     0.0048 Validation Accuracy: 0.680400
Epoch 42, CIFAR-10 Batch 1:  Loss:     0.0016 Validation Accuracy: 0.682000
Epoch 42, CIFAR-10 Batch 2:  Loss:     0.0006 Validation Accuracy: 0.700200
Epoch 42, CIFAR-10 Batch 3:  Loss:     0.0004 Validation Accuracy: 0.682400
Epoch 42, CIFAR-10 Batch 4:  Loss:     0.0033 Validation Accuracy: 0.674400
Epoch 42, CIFAR-10 Batch 5:  Loss:     0.0071 Validation Accuracy: 0.689600
Epoch 43, CIFAR-10 Batch 1:  Loss:     0.0017 Validation Accuracy: 0.674800
Epoch 43, CIFAR-10 Batch 2:  Loss:     0.0023 Validation Accuracy: 0.692200
Epoch 43, CIFAR-10 Batch 3:  Loss:     0.0013 Validation Accuracy: 0.691200
Epoch 43, CIFAR-10 Batch 4:  Loss:     0.0007 Validation Accuracy: 0.677800
Epoch 43, CIFAR-10 Batch 5:  Loss:     0.0039 Validation Accuracy: 0.698600
Epoch 44, CIFAR-10 Batch 1:  Loss:     0.0006 Validation Accuracy: 0.682400
Epoch 44, CIFAR-10 Batch 2:  Loss:     0.0038 Validation Accuracy: 0.699800
Epoch 44, CIFAR-10 Batch 3:  Loss:     0.0004 Validation Accuracy: 0.685200
Epoch 44, CIFAR-10 Batch 4:  Loss:     0.0006 Validation Accuracy: 0.689200
Epoch 44, CIFAR-10 Batch 5:  Loss:     0.0047 Validation Accuracy: 0.677800
Epoch 45, CIFAR-10 Batch 1:  Loss:     0.0008 Validation Accuracy: 0.674200
Epoch 45, CIFAR-10 Batch 2:  Loss:     0.0011 Validation Accuracy: 0.693200
Epoch 45, CIFAR-10 Batch 3:  Loss:     0.0003 Validation Accuracy: 0.679600
Epoch 45, CIFAR-10 Batch 4:  Loss:     0.0003 Validation Accuracy: 0.681200
Epoch 45, CIFAR-10 Batch 5:  Loss:     0.0008 Validation Accuracy: 0.691600
Epoch 46, CIFAR-10 Batch 1:  Loss:     0.0015 Validation Accuracy: 0.688000
Epoch 46, CIFAR-10 Batch 2:  Loss:     0.0014 Validation Accuracy: 0.701000
Epoch 46, CIFAR-10 Batch 3:  Loss:     0.0004 Validation Accuracy: 0.685200
Epoch 46, CIFAR-10 Batch 4:  Loss:     0.0008 Validation Accuracy: 0.681000
Epoch 46, CIFAR-10 Batch 5:  Loss:     0.0007 Validation Accuracy: 0.687800
Epoch 47, CIFAR-10 Batch 1:  Loss:     0.0008 Validation Accuracy: 0.673800
Epoch 47, CIFAR-10 Batch 2:  Loss:     0.0002 Validation Accuracy: 0.697000
Epoch 47, CIFAR-10 Batch 3:  Loss:     0.0006 Validation Accuracy: 0.680400
Epoch 47, CIFAR-10 Batch 4:  Loss:     0.0003 Validation Accuracy: 0.686800
Epoch 47, CIFAR-10 Batch 5:  Loss:     0.0004 Validation Accuracy: 0.691800
Epoch 48, CIFAR-10 Batch 1:  Loss:     0.0023 Validation Accuracy: 0.686400
Epoch 48, CIFAR-10 Batch 2:  Loss:     0.0006 Validation Accuracy: 0.702600
Epoch 48, CIFAR-10 Batch 3:  Loss:     0.0021 Validation Accuracy: 0.693800
Epoch 48, CIFAR-10 Batch 4:  Loss:     0.0003 Validation Accuracy: 0.693600
Epoch 48, CIFAR-10 Batch 5:  Loss:     0.0012 Validation Accuracy: 0.684000
Epoch 49, CIFAR-10 Batch 1:  Loss:     0.0028 Validation Accuracy: 0.677800
Epoch 49, CIFAR-10 Batch 2:  Loss:     0.0010 Validation Accuracy: 0.685200
Epoch 49, CIFAR-10 Batch 3:  Loss:     0.0006 Validation Accuracy: 0.682000
Epoch 49, CIFAR-10 Batch 4:  Loss:     0.0002 Validation Accuracy: 0.696600
Epoch 49, CIFAR-10 Batch 5:  Loss:     0.0005 Validation Accuracy: 0.690400
Epoch 50, CIFAR-10 Batch 1:  Loss:     0.0039 Validation Accuracy: 0.683600
Epoch 50, CIFAR-10 Batch 2:  Loss:     0.0024 Validation Accuracy: 0.695800
Epoch 50, CIFAR-10 Batch 3:  Loss:     0.0001 Validation Accuracy: 0.688800
Epoch 50, CIFAR-10 Batch 4:  Loss:     0.0005 Validation Accuracy: 0.688400
Epoch 50, CIFAR-10 Batch 5:  Loss:     0.0029 Validation Accuracy: 0.684600
Epoch 51, CIFAR-10 Batch 1:  Loss:     0.0002 Validation Accuracy: 0.677000
Epoch 51, CIFAR-10 Batch 2:  Loss:     0.0010 Validation Accuracy: 0.696200
Epoch 51, CIFAR-10 Batch 3:  Loss:     0.0010 Validation Accuracy: 0.694600
Epoch 51, CIFAR-10 Batch 4:  Loss:     0.0011 Validation Accuracy: 0.694800
Epoch 51, CIFAR-10 Batch 5:  Loss:     0.0002 Validation Accuracy: 0.687200
Epoch 52, CIFAR-10 Batch 1:  Loss:     0.0024 Validation Accuracy: 0.689600
Epoch 52, CIFAR-10 Batch 2:  Loss:     0.0069 Validation Accuracy: 0.690200
Epoch 52, CIFAR-10 Batch 3:  Loss:     0.0000 Validation Accuracy: 0.683600
Epoch 52, CIFAR-10 Batch 4:  Loss:     0.0001 Validation Accuracy: 0.696800
Epoch 52, CIFAR-10 Batch 5:  Loss:     0.0110 Validation Accuracy: 0.692800
Epoch 53, CIFAR-10 Batch 1:  Loss:     0.0026 Validation Accuracy: 0.690000
Epoch 53, CIFAR-10 Batch 2:  Loss:     0.0027 Validation Accuracy: 0.695400
Epoch 53, CIFAR-10 Batch 3:  Loss:     0.0002 Validation Accuracy: 0.691800
Epoch 53, CIFAR-10 Batch 4:  Loss:     0.0006 Validation Accuracy: 0.693000
Epoch 53, CIFAR-10 Batch 5:  Loss:     0.0013 Validation Accuracy: 0.680000
Epoch 54, CIFAR-10 Batch 1:  Loss:     0.0004 Validation Accuracy: 0.688000
Epoch 54, CIFAR-10 Batch 2:  Loss:     0.0001 Validation Accuracy: 0.680600
Epoch 54, CIFAR-10 Batch 3:  Loss:     0.0002 Validation Accuracy: 0.684200
Epoch 54, CIFAR-10 Batch 4:  Loss:     0.0010 Validation Accuracy: 0.692800
Epoch 54, CIFAR-10 Batch 5:  Loss:     0.0007 Validation Accuracy: 0.686800
Epoch 55, CIFAR-10 Batch 1:  Loss:     0.0010 Validation Accuracy: 0.687800
Epoch 55, CIFAR-10 Batch 2:  Loss:     0.0007 Validation Accuracy: 0.687200
Epoch 55, CIFAR-10 Batch 3:  Loss:     0.0013 Validation Accuracy: 0.681400
Epoch 55, CIFAR-10 Batch 4:  Loss:     0.0042 Validation Accuracy: 0.685000
Epoch 55, CIFAR-10 Batch 5:  Loss:     0.0016 Validation Accuracy: 0.687400
Epoch 56, CIFAR-10 Batch 1:  Loss:     0.0013 Validation Accuracy: 0.694600
Epoch 56, CIFAR-10 Batch 2:  Loss:     0.0019 Validation Accuracy: 0.685400
Epoch 56, CIFAR-10 Batch 3:  Loss:     0.0002 Validation Accuracy: 0.686000
Epoch 56, CIFAR-10 Batch 4:  Loss:     0.0004 Validation Accuracy: 0.694400
Epoch 56, CIFAR-10 Batch 5:  Loss:     0.0002 Validation Accuracy: 0.688800
Epoch 57, CIFAR-10 Batch 1:  Loss:     0.0003 Validation Accuracy: 0.687200
Epoch 57, CIFAR-10 Batch 2:  Loss:     0.0013 Validation Accuracy: 0.688000
Epoch 57, CIFAR-10 Batch 3:  Loss:     0.0004 Validation Accuracy: 0.688000
Epoch 57, CIFAR-10 Batch 4:  Loss:     0.0030 Validation Accuracy: 0.682600
Epoch 57, CIFAR-10 Batch 5:  Loss:     0.0010 Validation Accuracy: 0.693800
Epoch 58, CIFAR-10 Batch 1:  Loss:     0.0003 Validation Accuracy: 0.692400
Epoch 58, CIFAR-10 Batch 2:  Loss:     0.0017 Validation Accuracy: 0.691000
Epoch 58, CIFAR-10 Batch 3:  Loss:     0.0006 Validation Accuracy: 0.693200
Epoch 58, CIFAR-10 Batch 4:  Loss:     0.0026 Validation Accuracy: 0.686400
Epoch 58, CIFAR-10 Batch 5:  Loss:     0.0002 Validation Accuracy: 0.689600
Epoch 59, CIFAR-10 Batch 1:  Loss:     0.0004 Validation Accuracy: 0.689200
Epoch 59, CIFAR-10 Batch 2:  Loss:     0.0027 Validation Accuracy: 0.689200
Epoch 59, CIFAR-10 Batch 3:  Loss:     0.0289 Validation Accuracy: 0.691200
Epoch 59, CIFAR-10 Batch 4:  Loss:     0.0000 Validation Accuracy: 0.684400
Epoch 59, CIFAR-10 Batch 5:  Loss:     0.0011 Validation Accuracy: 0.681400
Epoch 60, CIFAR-10 Batch 1:  Loss:     0.0005 Validation Accuracy: 0.690600
Epoch 60, CIFAR-10 Batch 2:  Loss:     0.0018 Validation Accuracy: 0.692800
Epoch 60, CIFAR-10 Batch 3:  Loss:     0.0002 Validation Accuracy: 0.683800
Epoch 60, CIFAR-10 Batch 4:  Loss:     0.0001 Validation Accuracy: 0.690800
Epoch 60, CIFAR-10 Batch 5:  Loss:     0.0008 Validation Accuracy: 0.671600
Epoch 61, CIFAR-10 Batch 1:  Loss:     0.0015 Validation Accuracy: 0.696200
Epoch 61, CIFAR-10 Batch 2:  Loss:     0.0011 Validation Accuracy: 0.685600
Epoch 61, CIFAR-10 Batch 3:  Loss:     0.0010 Validation Accuracy: 0.694400
Epoch 61, CIFAR-10 Batch 4:  Loss:     0.0000 Validation Accuracy: 0.702800
Epoch 61, CIFAR-10 Batch 5:  Loss:     0.0005 Validation Accuracy: 0.682800
Epoch 62, CIFAR-10 Batch 1:  Loss:     0.0003 Validation Accuracy: 0.692000
Epoch 62, CIFAR-10 Batch 2:  Loss:     0.0000 Validation Accuracy: 0.693600
Epoch 62, CIFAR-10 Batch 3:  Loss:     0.0001 Validation Accuracy: 0.693800
Epoch 62, CIFAR-10 Batch 4:  Loss:     0.0050 Validation Accuracy: 0.694800
Epoch 62, CIFAR-10 Batch 5:  Loss:     0.0002 Validation Accuracy: 0.685800
Epoch 63, CIFAR-10 Batch 1:  Loss:     0.0005 Validation Accuracy: 0.699000
Epoch 63, CIFAR-10 Batch 2:  Loss:     0.0002 Validation Accuracy: 0.690000
Epoch 63, CIFAR-10 Batch 3:  Loss:     0.0001 Validation Accuracy: 0.696200
Epoch 63, CIFAR-10 Batch 4:  Loss:     0.0023 Validation Accuracy: 0.682800
Epoch 63, CIFAR-10 Batch 5:  Loss:     0.0001 Validation Accuracy: 0.677600
Epoch 64, CIFAR-10 Batch 1:  Loss:     0.0003 Validation Accuracy: 0.697400
Epoch 64, CIFAR-10 Batch 2:  Loss:     0.0003 Validation Accuracy: 0.692200
Epoch 64, CIFAR-10 Batch 3:  Loss:     0.0003 Validation Accuracy: 0.693400
Epoch 64, CIFAR-10 Batch 4:  Loss:     0.0010 Validation Accuracy: 0.696800
Epoch 64, CIFAR-10 Batch 5:  Loss:     0.0004 Validation Accuracy: 0.676600
Epoch 65, CIFAR-10 Batch 1:  Loss:     0.0005 Validation Accuracy: 0.694000
Epoch 65, CIFAR-10 Batch 2:  Loss:     0.0003 Validation Accuracy: 0.690000
Epoch 65, CIFAR-10 Batch 3:  Loss:     0.0006 Validation Accuracy: 0.690800
Epoch 65, CIFAR-10 Batch 4:  Loss:     0.0003 Validation Accuracy: 0.690800
Epoch 65, CIFAR-10 Batch 5:  Loss:     0.0001 Validation Accuracy: 0.676800
Epoch 66, CIFAR-10 Batch 1:  Loss:     0.0024 Validation Accuracy: 0.699000
Epoch 66, CIFAR-10 Batch 2:  Loss:     0.0002 Validation Accuracy: 0.693000
Epoch 66, CIFAR-10 Batch 3:  Loss:     0.0002 Validation Accuracy: 0.693600
Epoch 66, CIFAR-10 Batch 4:  Loss:     0.0001 Validation Accuracy: 0.694000
Epoch 66, CIFAR-10 Batch 5:  Loss:     0.0002 Validation Accuracy: 0.689000
Epoch 67, CIFAR-10 Batch 1:  Loss:     0.0000 Validation Accuracy: 0.698200
Epoch 67, CIFAR-10 Batch 2:  Loss:     0.0003 Validation Accuracy: 0.689000
Epoch 67, CIFAR-10 Batch 3:  Loss:     0.0002 Validation Accuracy: 0.693200
Epoch 67, CIFAR-10 Batch 4:  Loss:     0.0036 Validation Accuracy: 0.697800
Epoch 67, CIFAR-10 Batch 5:  Loss:     0.0001 Validation Accuracy: 0.677400
Epoch 68, CIFAR-10 Batch 1:  Loss:     0.0002 Validation Accuracy: 0.701000
Epoch 68, CIFAR-10 Batch 2:  Loss:     0.0010 Validation Accuracy: 0.676200
Epoch 68, CIFAR-10 Batch 3:  Loss:     0.0013 Validation Accuracy: 0.691400
Epoch 68, CIFAR-10 Batch 4:  Loss:     0.0013 Validation Accuracy: 0.681000
Epoch 68, CIFAR-10 Batch 5:  Loss:     0.0020 Validation Accuracy: 0.697800
Epoch 69, CIFAR-10 Batch 1:  Loss:     0.0003 Validation Accuracy: 0.690200
Epoch 69, CIFAR-10 Batch 2:  Loss:     0.0004 Validation Accuracy: 0.694600
Epoch 69, CIFAR-10 Batch 3:  Loss:     0.0001 Validation Accuracy: 0.699600
Epoch 69, CIFAR-10 Batch 4:  Loss:     0.0001 Validation Accuracy: 0.692800
Epoch 69, CIFAR-10 Batch 5:  Loss:     0.0002 Validation Accuracy: 0.693600
Epoch 70, CIFAR-10 Batch 1:  Loss:     0.0007 Validation Accuracy: 0.695000
Epoch 70, CIFAR-10 Batch 2:  Loss:     0.0019 Validation Accuracy: 0.701200
Epoch 70, CIFAR-10 Batch 3:  Loss:     0.0001 Validation Accuracy: 0.697400
Epoch 70, CIFAR-10 Batch 4:  Loss:     0.0003 Validation Accuracy: 0.693400
Epoch 70, CIFAR-10 Batch 5:  Loss:     0.0001 Validation Accuracy: 0.693400
Epoch 71, CIFAR-10 Batch 1:  Loss:     0.0003 Validation Accuracy: 0.701200
Epoch 71, CIFAR-10 Batch 2:  Loss:     0.0007 Validation Accuracy: 0.686400
Epoch 71, CIFAR-10 Batch 3:  Loss:     0.0001 Validation Accuracy: 0.690600
Epoch 71, CIFAR-10 Batch 4:  Loss:     0.0005 Validation Accuracy: 0.689000
Epoch 71, CIFAR-10 Batch 5:  Loss:     0.0025 Validation Accuracy: 0.693800
Epoch 72, CIFAR-10 Batch 1:  Loss:     0.0147 Validation Accuracy: 0.687200
Epoch 72, CIFAR-10 Batch 2:  Loss:     0.0001 Validation Accuracy: 0.701400
Epoch 72, CIFAR-10 Batch 3:  Loss:     0.0002 Validation Accuracy: 0.696000
Epoch 72, CIFAR-10 Batch 4:  Loss:     0.0001 Validation Accuracy: 0.689400
Epoch 72, CIFAR-10 Batch 5:  Loss:     0.0036 Validation Accuracy: 0.686000
Epoch 73, CIFAR-10 Batch 1:  Loss:     0.0002 Validation Accuracy: 0.689200
Epoch 73, CIFAR-10 Batch 2:  Loss:     0.0005 Validation Accuracy: 0.694800
Epoch 73, CIFAR-10 Batch 3:  Loss:     0.0005 Validation Accuracy: 0.690800
Epoch 73, CIFAR-10 Batch 4:  Loss:     0.0005 Validation Accuracy: 0.694000
Epoch 73, CIFAR-10 Batch 5:  Loss:     0.0001 Validation Accuracy: 0.693400
Epoch 74, CIFAR-10 Batch 1:  Loss:     0.0117 Validation Accuracy: 0.691200
Epoch 74, CIFAR-10 Batch 2:  Loss:     0.0058 Validation Accuracy: 0.682400
Epoch 74, CIFAR-10 Batch 3:  Loss:     0.0001 Validation Accuracy: 0.693400
Epoch 74, CIFAR-10 Batch 4:  Loss:     0.0001 Validation Accuracy: 0.688600
Epoch 74, CIFAR-10 Batch 5:  Loss:     0.0022 Validation Accuracy: 0.689000
Epoch 75, CIFAR-10 Batch 1:  Loss:     0.0021 Validation Accuracy: 0.700200
Epoch 75, CIFAR-10 Batch 2:  Loss:     0.0015 Validation Accuracy: 0.695800
Epoch 75, CIFAR-10 Batch 3:  Loss:     0.0000 Validation Accuracy: 0.697400
Epoch 75, CIFAR-10 Batch 4:  Loss:     0.0005 Validation Accuracy: 0.692800
Epoch 75, CIFAR-10 Batch 5:  Loss:     0.0011 Validation Accuracy: 0.693200
Epoch 76, CIFAR-10 Batch 1:  Loss:     0.0022 Validation Accuracy: 0.702400
Epoch 76, CIFAR-10 Batch 2:  Loss:     0.0002 Validation Accuracy: 0.693400
Epoch 76, CIFAR-10 Batch 3:  Loss:     0.0000 Validation Accuracy: 0.693400
Epoch 76, CIFAR-10 Batch 4:  Loss:     0.0008 Validation Accuracy: 0.694200
Epoch 76, CIFAR-10 Batch 5:  Loss:     0.0001 Validation Accuracy: 0.698000
Epoch 77, CIFAR-10 Batch 1:  Loss:     0.0003 Validation Accuracy: 0.693200
Epoch 77, CIFAR-10 Batch 2:  Loss:     0.0002 Validation Accuracy: 0.691400
Epoch 77, CIFAR-10 Batch 3:  Loss:     0.0001 Validation Accuracy: 0.679400
Epoch 77, CIFAR-10 Batch 4:  Loss:     0.0026 Validation Accuracy: 0.684600
Epoch 77, CIFAR-10 Batch 5:  Loss:     0.0001 Validation Accuracy: 0.696200
Epoch 78, CIFAR-10 Batch 1:  Loss:     0.0001 Validation Accuracy: 0.697400
Epoch 78, CIFAR-10 Batch 2:  Loss:     0.0002 Validation Accuracy: 0.692000
Epoch 78, CIFAR-10 Batch 3:  Loss:     0.0004 Validation Accuracy: 0.685600
Epoch 78, CIFAR-10 Batch 4:  Loss:     0.0002 Validation Accuracy: 0.688800
Epoch 78, CIFAR-10 Batch 5:  Loss:     0.0439 Validation Accuracy: 0.695400
Epoch 79, CIFAR-10 Batch 1:  Loss:     0.0001 Validation Accuracy: 0.696000
Epoch 79, CIFAR-10 Batch 2:  Loss:     0.0011 Validation Accuracy: 0.694000
Epoch 79, CIFAR-10 Batch 3:  Loss:     0.0002 Validation Accuracy: 0.683400
Epoch 79, CIFAR-10 Batch 4:  Loss:     0.0018 Validation Accuracy: 0.693200
Epoch 79, CIFAR-10 Batch 5:  Loss:     0.0001 Validation Accuracy: 0.692600
Epoch 80, CIFAR-10 Batch 1:  Loss:     0.0027 Validation Accuracy: 0.687800
Epoch 80, CIFAR-10 Batch 2:  Loss:     0.0010 Validation Accuracy: 0.689200
Epoch 80, CIFAR-10 Batch 3:  Loss:     0.0012 Validation Accuracy: 0.698800
Epoch 80, CIFAR-10 Batch 4:  Loss:     0.0003 Validation Accuracy: 0.697000
Epoch 80, CIFAR-10 Batch 5:  Loss:     0.0003 Validation Accuracy: 0.687400
Epoch 81, CIFAR-10 Batch 1:  Loss:     0.0025 Validation Accuracy: 0.694600
Epoch 81, CIFAR-10 Batch 2:  Loss:     0.0000 Validation Accuracy: 0.700000
Epoch 81, CIFAR-10 Batch 3:  Loss:     0.0001 Validation Accuracy: 0.703800
Epoch 81, CIFAR-10 Batch 4:  Loss:     0.0002 Validation Accuracy: 0.694800
Epoch 81, CIFAR-10 Batch 5:  Loss:     0.0002 Validation Accuracy: 0.699400
Epoch 82, CIFAR-10 Batch 1:  Loss:     0.0001 Validation Accuracy: 0.690400
Epoch 82, CIFAR-10 Batch 2:  Loss:     0.0000 Validation Accuracy: 0.703000
Epoch 82, CIFAR-10 Batch 3:  Loss:     0.0000 Validation Accuracy: 0.699200
Epoch 82, CIFAR-10 Batch 4:  Loss:     0.0001 Validation Accuracy: 0.688400
Epoch 82, CIFAR-10 Batch 5:  Loss:     0.0001 Validation Accuracy: 0.697600
Epoch 83, CIFAR-10 Batch 1:  Loss:     0.0001 Validation Accuracy: 0.702600
Epoch 83, CIFAR-10 Batch 2:  Loss:     0.0004 Validation Accuracy: 0.701200
Epoch 83, CIFAR-10 Batch 3:  Loss:     0.0001 Validation Accuracy: 0.688800
Epoch 83, CIFAR-10 Batch 4:  Loss:     0.0001 Validation Accuracy: 0.691200
Epoch 83, CIFAR-10 Batch 5:  Loss:     0.0000 Validation Accuracy: 0.696600
Epoch 84, CIFAR-10 Batch 1:  Loss:     0.0001 Validation Accuracy: 0.698400
Epoch 84, CIFAR-10 Batch 2:  Loss:     0.0005 Validation Accuracy: 0.700800
Epoch 84, CIFAR-10 Batch 3:  Loss:     0.0010 Validation Accuracy: 0.702000
Epoch 84, CIFAR-10 Batch 4:  Loss:     0.0001 Validation Accuracy: 0.693800
Epoch 84, CIFAR-10 Batch 5:  Loss:     0.0001 Validation Accuracy: 0.694200
Epoch 85, CIFAR-10 Batch 1:  Loss:     0.0005 Validation Accuracy: 0.696000
Epoch 85, CIFAR-10 Batch 2:  Loss:     0.0000 Validation Accuracy: 0.696200
Epoch 85, CIFAR-10 Batch 3:  Loss:     0.0009 Validation Accuracy: 0.690000
Epoch 85, CIFAR-10 Batch 4:  Loss:     0.0001 Validation Accuracy: 0.694600
Epoch 85, CIFAR-10 Batch 5:  Loss:     0.0004 Validation Accuracy: 0.705600
Epoch 86, CIFAR-10 Batch 1:  Loss:     0.0000 Validation Accuracy: 0.700400
Epoch 86, CIFAR-10 Batch 2:  Loss:     0.0003 Validation Accuracy: 0.702800
Epoch 86, CIFAR-10 Batch 3:  Loss:     0.0002 Validation Accuracy: 0.683400
Epoch 86, CIFAR-10 Batch 4:  Loss:     0.0000 Validation Accuracy: 0.681400
Epoch 86, CIFAR-10 Batch 5:  Loss:     0.0008 Validation Accuracy: 0.692200
Epoch 87, CIFAR-10 Batch 1:  Loss:     0.0004 Validation Accuracy: 0.702400
Epoch 87, CIFAR-10 Batch 2:  Loss:     0.0000 Validation Accuracy: 0.694800
Epoch 87, CIFAR-10 Batch 3:  Loss:     0.0000 Validation Accuracy: 0.689200
Epoch 87, CIFAR-10 Batch 4:  Loss:     0.0006 Validation Accuracy: 0.690000
Epoch 87, CIFAR-10 Batch 5:  Loss:     0.0001 Validation Accuracy: 0.696800
Epoch 88, CIFAR-10 Batch 1:  Loss:     0.0001 Validation Accuracy: 0.690400
Epoch 88, CIFAR-10 Batch 2:  Loss:     0.0000 Validation Accuracy: 0.698600
Epoch 88, CIFAR-10 Batch 3:  Loss:     0.0001 Validation Accuracy: 0.689400
Epoch 88, CIFAR-10 Batch 4:  Loss:     0.0336 Validation Accuracy: 0.690600
Epoch 88, CIFAR-10 Batch 5:  Loss:     0.0000 Validation Accuracy: 0.690000
Epoch 89, CIFAR-10 Batch 1:  Loss:     0.0002 Validation Accuracy: 0.696200
Epoch 89, CIFAR-10 Batch 2:  Loss:     0.0003 Validation Accuracy: 0.699800
Epoch 89, CIFAR-10 Batch 3:  Loss:     0.0002 Validation Accuracy: 0.693400
Epoch 89, CIFAR-10 Batch 4:  Loss:     0.0000 Validation Accuracy: 0.692200
Epoch 89, CIFAR-10 Batch 5:  Loss:     0.0001 Validation Accuracy: 0.693000
Epoch 90, CIFAR-10 Batch 1:  Loss:     0.0002 Validation Accuracy: 0.704600
Epoch 90, CIFAR-10 Batch 2:  Loss:     0.0001 Validation Accuracy: 0.698000
Epoch 90, CIFAR-10 Batch 3:  Loss:     0.0000 Validation Accuracy: 0.693400
Epoch 90, CIFAR-10 Batch 4:  Loss:     0.0000 Validation Accuracy: 0.693600
Epoch 90, CIFAR-10 Batch 5:  Loss:     0.0001 Validation Accuracy: 0.698400
Epoch 91, CIFAR-10 Batch 1:  Loss:     0.0001 Validation Accuracy: 0.706000
Epoch 91, CIFAR-10 Batch 2:  Loss:     0.0007 Validation Accuracy: 0.692400
Epoch 91, CIFAR-10 Batch 3:  Loss:     0.0000 Validation Accuracy: 0.694400
Epoch 91, CIFAR-10 Batch 4:  Loss:     0.0000 Validation Accuracy: 0.680800
Epoch 91, CIFAR-10 Batch 5:  Loss:     0.0000 Validation Accuracy: 0.691600
Epoch 92, CIFAR-10 Batch 1:  Loss:     0.0001 Validation Accuracy: 0.697400
Epoch 92, CIFAR-10 Batch 2:  Loss:     0.0001 Validation Accuracy: 0.696400
Epoch 92, CIFAR-10 Batch 3:  Loss:     0.0002 Validation Accuracy: 0.693000
Epoch 92, CIFAR-10 Batch 4:  Loss:     0.0001 Validation Accuracy: 0.689600
Epoch 92, CIFAR-10 Batch 5:  Loss:     0.0000 Validation Accuracy: 0.702200
Epoch 93, CIFAR-10 Batch 1:  Loss:     0.0004 Validation Accuracy: 0.698200
Epoch 93, CIFAR-10 Batch 2:  Loss:     0.0000 Validation Accuracy: 0.696000
Epoch 93, CIFAR-10 Batch 3:  Loss:     0.0000 Validation Accuracy: 0.684800
Epoch 93, CIFAR-10 Batch 4:  Loss:     0.0023 Validation Accuracy: 0.688800
Epoch 93, CIFAR-10 Batch 5:  Loss:     0.0000 Validation Accuracy: 0.688600
Epoch 94, CIFAR-10 Batch 1:  Loss:     0.0001 Validation Accuracy: 0.694000
Epoch 94, CIFAR-10 Batch 2:  Loss:     0.0000 Validation Accuracy: 0.704200
Epoch 94, CIFAR-10 Batch 3:  Loss:     0.0000 Validation Accuracy: 0.701400
Epoch 94, CIFAR-10 Batch 4:  Loss:     0.0000 Validation Accuracy: 0.698000
Epoch 94, CIFAR-10 Batch 5:  Loss:     0.0000 Validation Accuracy: 0.693800
Epoch 95, CIFAR-10 Batch 1:  Loss:     0.0031 Validation Accuracy: 0.689600
Epoch 95, CIFAR-10 Batch 2:  Loss:     0.0000 Validation Accuracy: 0.696000
Epoch 95, CIFAR-10 Batch 3:  Loss:     0.0002 Validation Accuracy: 0.703800
Epoch 95, CIFAR-10 Batch 4:  Loss:     0.0012 Validation Accuracy: 0.701800
Epoch 95, CIFAR-10 Batch 5:  Loss:     0.0000 Validation Accuracy: 0.703600
Epoch 96, CIFAR-10 Batch 1:  Loss:     0.0002 Validation Accuracy: 0.694800
Epoch 96, CIFAR-10 Batch 2:  Loss:     0.0000 Validation Accuracy: 0.703400
Epoch 96, CIFAR-10 Batch 3:  Loss:     0.0000 Validation Accuracy: 0.692800
Epoch 96, CIFAR-10 Batch 4:  Loss:     0.0005 Validation Accuracy: 0.690600
Epoch 96, CIFAR-10 Batch 5:  Loss:     0.0000 Validation Accuracy: 0.692600
Epoch 97, CIFAR-10 Batch 1:  Loss:     0.0003 Validation Accuracy: 0.703200
Epoch 97, CIFAR-10 Batch 2:  Loss:     0.0001 Validation Accuracy: 0.699200
Epoch 97, CIFAR-10 Batch 3:  Loss:     0.0000 Validation Accuracy: 0.698200
Epoch 97, CIFAR-10 Batch 4:  Loss:     0.0000 Validation Accuracy: 0.700000
Epoch 97, CIFAR-10 Batch 5:  Loss:     0.0000 Validation Accuracy: 0.698600
Epoch 98, CIFAR-10 Batch 1:  Loss:     0.0000 Validation Accuracy: 0.698200
Epoch 98, CIFAR-10 Batch 2:  Loss:     0.0000 Validation Accuracy: 0.700600
Epoch 98, CIFAR-10 Batch 3:  Loss:     0.0000 Validation Accuracy: 0.692400
Epoch 98, CIFAR-10 Batch 4:  Loss:     0.0001 Validation Accuracy: 0.699400
Epoch 98, CIFAR-10 Batch 5:  Loss:     0.0010 Validation Accuracy: 0.690200
Epoch 99, CIFAR-10 Batch 1:  Loss:     0.0005 Validation Accuracy: 0.692400
Epoch 99, CIFAR-10 Batch 2:  Loss:     0.0001 Validation Accuracy: 0.701800
Epoch 99, CIFAR-10 Batch 3:  Loss:     0.0000 Validation Accuracy: 0.695600
Epoch 99, CIFAR-10 Batch 4:  Loss:     0.0001 Validation Accuracy: 0.692400
Epoch 99, CIFAR-10 Batch 5:  Loss:     0.0001 Validation Accuracy: 0.701800
Epoch 100, CIFAR-10 Batch 1:  Loss:     0.0003 Validation Accuracy: 0.700000
Epoch 100, CIFAR-10 Batch 2:  Loss:     0.0001 Validation Accuracy: 0.701000
Epoch 100, CIFAR-10 Batch 3:  Loss:     0.0000 Validation Accuracy: 0.696800
Epoch 100, CIFAR-10 Batch 4:  Loss:     0.0001 Validation Accuracy: 0.705200
Epoch 100, CIFAR-10 Batch 5:  Loss:     0.0002 Validation Accuracy: 0.700800

Checkpoint

The model has been saved to disk.

Test Model

Test your model against the test dataset. This will be your final accuracy. You should have an accuracy greater than 50%. If you don't, keep tweaking the model architecture and parameters.


In [195]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import tensorflow as tf
import pickle
import helper
import random

# Set batch size if not already set
try:
    if batch_size:
        pass
except NameError:
    batch_size = 64

save_model_path = './image_classification'
n_samples = 4
top_n_predictions = 3

def test_model():
    """
    Test the saved model against the test dataset
    """

    test_features, test_labels = pickle.load(open('preprocess_test.p', mode='rb'))
    loaded_graph = tf.Graph()

    with tf.Session(graph=loaded_graph) as sess:
        # Load model
        loader = tf.train.import_meta_graph(save_model_path + '.meta')
        loader.restore(sess, save_model_path)

        # Get Tensors from loaded model
        loaded_x = loaded_graph.get_tensor_by_name('x:0')
        loaded_y = loaded_graph.get_tensor_by_name('y:0')
        loaded_keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')
        loaded_logits = loaded_graph.get_tensor_by_name('logits:0')
        loaded_acc = loaded_graph.get_tensor_by_name('accuracy:0')
        
        # Get accuracy in batches for memory limitations
        test_batch_acc_total = 0
        test_batch_count = 0
        
        for test_feature_batch, test_label_batch in helper.batch_features_labels(test_features, test_labels, batch_size):
            test_batch_acc_total += sess.run(
                loaded_acc,
                feed_dict={loaded_x: test_feature_batch, loaded_y: test_label_batch, loaded_keep_prob: 1.0})
            test_batch_count += 1

        print('Testing Accuracy: {}\n'.format(test_batch_acc_total/test_batch_count))

        # Print Random Samples
        random_test_features, random_test_labels = tuple(zip(*random.sample(list(zip(test_features, test_labels)), n_samples)))
        random_test_predictions = sess.run(
            tf.nn.top_k(tf.nn.softmax(loaded_logits), top_n_predictions),
            feed_dict={loaded_x: random_test_features, loaded_y: random_test_labels, loaded_keep_prob: 1.0})
        helper.display_image_predictions(random_test_features, random_test_labels, random_test_predictions)


test_model()


INFO:tensorflow:Restoring parameters from ./image_classification
Testing Accuracy: 0.6833465189873418

Why 50-80% Accuracy?

You might be wondering why you can't get an accuracy any higher. First things first, 50% isn't bad for a simple CNN. Pure guessing would get you 10% accuracy. However, you might notice people are getting scores well above 80%. That's because we haven't taught you all there is to know about neural networks. We still need to cover a few more techniques.

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_image_classification.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.