In [2]:
from ggplot import *

import pandas as pd
import numpy as np

?ggplot

In [3]:
# ?diamonds
diamonds.head() # similar for data sets 'meat', 'mtcars', and 'pageviews'


Out[3]:
carat cut color clarity depth table price x y z
0 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43
1 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31
2 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31
3 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63
4 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75

In [4]:
type(diamonds)


Out[4]:
pandas.core.frame.DataFrame

In [5]:
?ggplot

In [6]:
p = ggplot(aes(x = 'carat', y = 'price'), data = diamonds)
p


Out[6]:
<ggplot: (-9223371872591522339)>

In [7]:
p1 = p + geom_point()  
p1


Out[7]:
<ggplot: (-9223371872591522339)>

In [8]:
p2 = p1 + facet_wrap("cut")
p2


Out[8]:
<ggplot: (-9223371872591522339)>

In [9]:
p3 = p2 + theme_bw()
p3


Out[9]:
<ggplot: (-9223371872591522339)>