In [17]:
import numpy as np
from sympy import *
init_printing()

In [3]:
x, y = symbols('x y', real=True)

In [4]:
a = 0.7190027e-2
b = 0.3956443e-5
c = -0.1842722e-8
d = 0.3471851e-12
e = -0.2616792e-16
k = -0.234471

In [18]:
# Eq(a*y + b*(y**2) + c*(y**3) + d*(y**4) + e*(y**5) + k -x)
# solve(Eq(a*y + b*(y**2) + c*(y**3) + d*(y**4) + e*(y**5) + k -x),y)
# solveset(Eq(a*y + b*(y**2) + c*(y**3) + k -x),y, domain=S.Reals)
# solve(Eq(a*y + b*(y**2) + c*(y**3) + d*(y**4)+ k -x),y)
equation = sympify(a*y + b*(y**2) + c*(y**3) + d*(y**4)+e*(y**5)+ k -x)
print(equation)


-x - 2.616792e-17*y**5 + 3.471851e-13*y**4 - 1.842722e-9*y**3 + 3.956443e-6*y**2 + 0.007190027*y - 0.234471

In [20]:
# equat = Eq(equation)
Eq(equation)


Out[20]:
$$- x - 2.616792 \cdot 10^{-17} y^{5} + 3.471851 \cdot 10^{-13} y^{4} - 1.842722 \cdot 10^{-9} y^{3} + 3.956443 \cdot 10^{-6} y^{2} + 0.007190027 y - 0.234471 = 0$$

In [19]:
T = np.arange(32,)


Out[19]:
$$\int \sqrt{\frac{1}{x}}\, dx$$

In [ ]: