In [31]:
%%latex
\begin{align}
length: [L] = \mathring A \equiv 10^{-10} m \newline
energy: [E] = \frac{kcal}{Mol} \equiv 6.947857855 \cdot 10^{-21} J \newline
mass: [m] = \frac{g}{Mol} \equiv 1,66057788 \cdot 10^{-24} g\newline
temperature: [T] = K\newline
time: [t] = 48.88821 \cdot 10^{-15} s\newline
velocity: [v] = \frac{\mathring A}{48.88821 \cdot 10^{-15} s} \equiv 2045.48295 \frac{m}{s} \newline
boltzmann: [kb] = 0.001987191 \frac{kcal}{K \cdot Mol} \newline
\newline
charge:[q] = e \equiv 1.602 \cdot 10^{-19} As\newline
potential: [phi] = \frac{E}{q} = \frac{kcal}{Mol \cdot e} \equiv 0.043369899 V\newline
epsilon0: [e0] = \frac{E}{phi^{2} \cdot L} = \frac{kcal \cdot Mol^{2} \cdot e^{2}}{Mol \cdot kcal^{2} \cdot 
                    \mathring A} \equiv 36.9380614 \cdot 10^{-9} \frac{As}{Vm} \newline

\end{align}


\begin{align} length: [L] = \mathring A \equiv 10^{-10} m \newline energy: [E] = \frac{kcal}{Mol} \equiv 6.947857855 \cdot 10^{-21} J \newline mass: [m] = \frac{g}{Mol} \equiv 1,66057788 \cdot 10^{-24} g\newline temperature: [T] = K\newline time: [t] = 48.88821 \cdot 10^{-15} s\newline velocity: [v] = \frac{\mathring A}{48.88821 \cdot 10^{-15} s} \equiv 2045.48295 \frac{m}{s} \newline boltzmann: [kb] = 0.001987191 \frac{kcal}{K \cdot Mol} \newline \newline charge:[q] = e \equiv 1.602 \cdot 10^{-19} As\newline potential: [phi] = \frac{E}{q} = \frac{kcal}{Mol \cdot e} \equiv 0.043369899 V\newline epsilon0: [e0] = \frac{E}{phi^{2} \cdot L} = \frac{kcal \cdot Mol^{2} \cdot e^{2}}{Mol \cdot kcal^{2} \cdot \mathring A} \equiv 36.9380614 \cdot 10^{-9} \frac{As}{Vm} \newline \end{align}

In [ ]: