In [23]:
import datetime
import pandas as pd
import pandas.io.data

alsea = pd.io.data.get_data_yahoo('ALSEA.MX', 
                                 start=datetime.datetime(2006, 10, 1), 
                                 end=datetime.datetime(2014, 1, 1))
alsea.head()


Out[23]:
Open High Low Close Volume Adj Close
Date
2006-10-02 45.25 46.00 45.11 46.00 197100 10.46
2006-10-03 46.00 46.00 45.95 45.98 59100 10.45
2006-10-04 46.00 46.22 45.98 46.14 992100 10.49
2006-10-05 46.10 47.35 46.09 47.25 661100 10.74
2006-10-06 47.25 49.00 47.25 48.60 668100 11.05

In [24]:
alsea['diff'] = alsea.Open - alsea.Close
alsea.head()


Out[24]:
Open High Low Close Volume Adj Close diff
Date
2006-10-02 45.25 46.00 45.11 46.00 197100 10.46 -0.75
2006-10-03 46.00 46.00 45.95 45.98 59100 10.45 0.02
2006-10-04 46.00 46.22 45.98 46.14 992100 10.49 -0.14
2006-10-05 46.10 47.35 46.09 47.25 661100 10.74 -1.15
2006-10-06 47.25 49.00 47.25 48.60 668100 11.05 -1.35

In [25]:
close_px = alsea['Adj Close']
mavg = pd.rolling_mean(close_px, 40)
mavg[-10:]


Out[25]:
Date
2013-12-19    39.61425
2013-12-20    39.62600
2013-12-23    39.62425
2013-12-24    39.62900
2013-12-25    39.63650
2013-12-26    39.62975
2013-12-27    39.60325
2013-12-30    39.60750
2013-12-31    39.62775
2014-01-01    39.66675
dtype: float64

In [26]:
rets = close_px / close_px.shift(1) - 1
rets.head()


Out[26]:
Date
2006-10-02         NaN
2006-10-03   -0.000956
2006-10-04    0.003828
2006-10-05    0.023832
2006-10-06    0.028864
Name: Adj Close, dtype: float64

In [ ]:
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rc('figure', figsize=(8, 7))

close_px.plot(label='ALSEA')
mavg.plot(label='mavg')
plt.legend()
plt.show()

In [ ]: