In [1]:
import pandas as pd

In [13]:
df = pd.read_csv('District and vehicles.tsv', sep='\t')

In [14]:
df.shape


Out[14]:
(138, 3)

In [7]:
df = df[df['Vehicles'] != 'null']

In [8]:
df = df[df['District'] != 'null']

In [11]:
df2 = df

In [12]:
df2.shape


Out[12]:
(71, 3)

In [16]:
df2.columns


Out[16]:
Index(['District', 'Vehicles', 'count_sum'], dtype='object')

In [18]:
df2['District']


Out[18]:
4               khulna
5               magura
6              gazipur
12           madaripur
22             comilla
23               bogra
30          chittagong
31        khagrachhari
33             barisal
34              sylhet
35               dhaka
36             tangail
37            rajshahi
44          chittagong
45        brahmanbaria
46           netrakona
50               dhaka
54              khulna
60               bogra
61            rajshahi
62          patuakhali
67               dhaka
68             rangpur
69               dhaka
70         narayanganj
82            rajshahi
85           gopalganj
87         narayanganj
88     chapainawabganj
89           madaripur
            ...       
103          dinajpuri
104          manikganj
105         nilphamari
106              dhaka
108            barisal
110      dhaka,barisal
111         shariatpur
112           dinajpur
114         chittagong
115        moulvibazar
116          chuadanga
117            jessore
118            gazipur
119          manikganj
120              dhaka
121           faridpur
123             khulna
124            tangail
125            jessore
126          rangamati
127          joypurhat
128          sunamganj
129              dhaka
130           dinajpur
132              bogra
133           chandpur
134           rajshahi
135            comilla
136           habiganj
137           bagerhat
Name: District, dtype: object

In [25]:
df_vehicles = pd.read_csv('vehiclecollision.tsv', sep='\t')

In [26]:
df_vehicles = df_vehicles[df_vehicles['Vehicle'] != 'null']

In [28]:
df_vehicles = df_vehicles[df_vehicles['Location'] != 'null']

In [29]:
import numpy as np
df_vehicles = df_vehicles[df_vehicles['Location'] != np.NaN]

In [32]:
df_vehicles = df_vehicles[df_vehicles['Vehicle'] != 'NaN']

In [33]:
df_vehicles = df_vehicles[df_vehicles['Location'] != 'NaN']

In [34]:
df_vehicles


Out[34]:
Vehicle Location count
0 ambulance dhaka 1.0
1 bus barisal 6.0
2 bus bogra 2.0
3 bus brahmanbaria 2.0
4 bus chandpur 1.0
5 bus chittagong 7.0
6 bus comilla 3.0
7 bus dhaka 13.0
9 bus faridpur 1.0
10 bus gazipur 1.0
11 bus gopalganj 1.0
12 bus jessore 1.0
13 bus joypurhat 1.0
14 bus khulna 3.0
15 bus madaripur 1.0
16 bus magura 1.0
17 bus manikganj 2.0
18 bus moulvibazar 1.0
19 bus mymensingh 1.0
20 bus narayanganj 1.0
21 bus netrakona 2.0
22 bus patuakhali 1.0
23 bus rajshahi 6.0
24 bus rangamati 1.0
25 bus rangpur 2.0
26 bus shariatpur 2.0
27 bus sunamganj 1.0
28 bus tangail 1.0
29 bus,bus chittagong 1.0
30 bus,bus comilla 1.0
... ... ... ...
105 microbus chuadanga 1.0
106 microbus dhaka 3.0
107 microbus rajshahi 1.0
109 truck NaN NaN
110 truck chittagong 2.0
111 truck dhaka 4.0
112 truck dhaka,barisal 1.0
113 truck dinajpur 1.0
114 truck gazipur 1.0
115 truck jessore 1.0
116 truck khagrachhari 2.0
117 truck madaripur 1.0
118 truck moulvibazar 1.0
119 truck rajshahi 1.0
120 truck,bus bogra 1.0
121 jeep,bus NaN NaN
122 jeep,bus dinajpuri 1.0
123 jeep,bus manikganj 1.0
124 jeep,bus nilphamari 1.0
125 jeep,bus sirajganj 1.0
126 rickshaw,bus NaN NaN
127 rickshaw,bus dhaka 1.0
128 rickshaw,bus rajshahi 2.0
129 rickshaw,bus sylhet 1.0
130 rickshaw,bus tangail 2.0
131 tempo,truck NaN NaN
132 tempo,truck dhaka 1.0
133 tempo,truck tempo NaN
134 tempo,truck khulna 1.0
135 caravan,bus tangail 1.0

132 rows × 3 columns


In [ ]: