In [1]:
# python notebook for Make Your Own Neural Network
# code for a 3-layer neural network, and code for learning the MNIST dataset
# this version uses the pytorch framework which allows GPU acceleration if available
# this update turns on CUDA GPU mode
# (c) Tariq Rashid, 2017
# license is GPLv2
In [11]:
import torch
from torch.autograd import Variable
import torch.nn as nn
import numpy
In [12]:
class NeuralNetwork(nn.Module):
def __init__(self, inodes, hnodes, onodes, learning_rate):
# call the base class's initialisation too
super().__init__()
# dimensions
self.inodes = inodes
self.hnodes = hnodes
self.onodes = onodes
# learning rate
self.lr = learning_rate
# define the layers and their sizes, turn off bias
self.linear_ih = nn.Linear(inodes, hnodes, bias=False)
self.linear_ho = nn.Linear(hnodes, onodes, bias=False)
# define activation function
self.activation = nn.Sigmoid()
# create error function
self.error_function = torch.nn.MSELoss(size_average=False)
# create optimiser, using simple stochastic gradient descent
self.optimiser = torch.optim.SGD(self.parameters(), self.lr)
pass
def forward(self, inputs_list):
# convert list to a 2-D FloatTensor then wrap in Variable
# also shift to GPU, remove .cuda. if not desired
inputs = Variable(torch.cuda.FloatTensor(inputs_list).view(1, self.inodes))
# combine input layer signals into hidden layer
hidden_inputs = self.linear_ih(inputs)
# apply sigmiod activation function
hidden_outputs = self.activation(hidden_inputs)
# combine hidden layer signals into output layer
final_inputs = self.linear_ho(hidden_outputs)
# apply sigmiod activation function
final_outputs = self.activation(final_inputs)
return final_outputs
def train(self, inputs_list, targets_list):
# calculate the output of the network
output = self.forward(inputs_list)
# create a Variable out of the target vector, doesn't need gradients calculated
# also shift to GPU, remove .cuda. if not desired
target_variable = Variable(torch.cuda.FloatTensor(targets_list).view(1, self.onodes), requires_grad=False)
# calculate error
loss = self.error_function(output, target_variable)
#print(loss.data[0])
# zero gradients, perform a backward pass, and update the weights.
self.optimiser.zero_grad()
loss.backward()
self.optimiser.step()
pass
pass
In [13]:
# number of input, hidden and output nodes
input_nodes = 784
hidden_nodes = 200
output_nodes = 10
# learning rate
learning_rate = 0.1
# create instance of neural network
n = NeuralNetwork(input_nodes,hidden_nodes,output_nodes, learning_rate)
# move neural network to the GPU, delete if not desired
n.cuda()
In [14]:
# load the mnist training data CSV file into a list
training_data_file = open("mnist_dataset/mnist_train.csv", 'r')
training_data_list = training_data_file.readlines()
training_data_file.close()
In [15]:
# %%timeit -n1 -r1 -c
# train the neural network
# epochs is the number of times the training data set is used for training
epochs = 5
for e in range(epochs):
# go through all records in the training data set
for record in training_data_list:
# split the record by the ',' commas
all_values = record.split(',')
# scale and shift the inputs
inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
# create the target output values (all 0.01, except the desired label which is 0.99)
targets = numpy.zeros(output_nodes) + 0.01
# all_values[0] is the target label for this record
targets[int(all_values[0])] = 0.99
n.train(inputs, targets)
pass
pass
In [16]:
## load the mnist test data CSV file into a list
test_data_file = open("mnist_dataset/mnist_test.csv", 'r')
test_data_list = test_data_file.readlines()
test_data_file.close()
In [ ]:
In [17]:
# test the neural network
# scorecard for how well the network performs, initially empty
scorecard = []
# go through all the records in the test data set
for record in test_data_list:
# split the record by the ',' commas
all_values = record.split(',')
# correct answer is first value
correct_label = int(all_values[0])
# scale and shift the inputs
inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
# query the network
outputs = n.forward(inputs)
# the index of the highest value corresponds to the label
m, label = outputs.max(1)
# append correct or incorrect to list
# need to extract from pytorch tensor via numpy to compare to python integer
if (label.data[0][0] == correct_label):
# network's answer matches correct answer, add 1 to scorecard
scorecard.append(1)
else:
# network's answer doesn't match correct answer, add 0 to scorecard
scorecard.append(0)
pass
pass
In [18]:
# calculate the performance score, the fraction of correct answers
scorecard_array = numpy.asarray(scorecard)
print ("performance = ", scorecard_array.sum() / scorecard_array.size)
In [ ]: