¡Hola!


  • Name: Maite Giménez.
  • Twitter: @maidotgimenez
  • Github: maigimenez
  • Who?:
    • Ph.D. student at Universitat Politècnica de València.
    • University Spokeperson of Spanish Python Association (¡Hazte socio/a!)

PyladiesES!

Where are the slides?

It's a notebook and it's available here: Github/maigimenez/ep2016_vect4word

Roadmap

  1. Definition of the problem.
    1. Text representation in NLP.
    2. An NLP problem: Binary gender classification.
  2. Get some data.
  3. Bag of words.
  4. Word embeddings
    1. Pre-trained word embeddings.
    2. Train your own model.
  5. Compare your approaches
  6. Discuss!

Science is broken

Science!

1. Definition of the problem

1.1. Words are NOT numbers

  • Most of the machine learning algorithms are designed to address problems trained with numeric features.

  • But in natural language processing we are dealing with words, so...

1.2. Binary gender classification is dead

Schler, J., Koppel, M., Argamon, S., & Pennebaker, J. W. (2006, March). Effects of Age and Gender on Blogging. In AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs (Vol. 6, pp. 199-205). read the paper

Feature Male Female
linux 0.53 ± 0.04 0.03 ± 0.01
india 0.62 ± 0.04 0.15 ± 0.01
programming 0.36 ± 0.02 0.08 ± 0.01
google 0.90 ± 0.04 0.19 ± 0.02
software 0.99 ± 0.05 0.17 ± 0.02
shopping 0.66 ± 0.02 1.48 ± 0.03
mom 2.07 ± 0.05 4.69 ± 0.08
cried 0.31 ± 0.01 0.72 ± 0.02
freaked 0.08 ± 0.01 0.21 ± 0.01
cute 0.83 ± 0.03 2.32 ± 0.04

Word frequency (per 10000 words) and standard error by gender

2. Get some data!

2.1 Gather your data


In [1]:
from configparser import ConfigParser
from os.path import join
from os import pardir

In [2]:
config = ConfigParser()
config.read(join(pardir,'src','credentials.ini'))

APP_KEY = config['twitter']['app_key']
APP_SECRET = config['twitter']['app_secret']
OAUTH_TOKEN =  config['twitter']['oauth_token']
OAUTH_TOKEN_SECRET =  config['twitter']['oauth_token_secret']

In [3]:
from twitter import oauth, Twitter, TwitterHTTPError

In [ ]:
auth = oauth.OAuth(OAUTH_TOKEN, OAUTH_TOKEN_SECRET,
                   APP_KEY, APP_SECRET)

twitter_api = Twitter(auth=auth)
twitter_api.retry = True

Full disclaimer: gender is non a binary issue. This is just a simplified example. If you are willing to expand this experiment, go ahead and contact me!


In [ ]:
brogrammers = ['jakevdp', 'rasbt', 'GaelVaroquaux', 'amuellerml', 'fperez_org', 
               'fpedregosa', 'ogrisel', 'dontusethiscode', 'randal_olson', 'tdhopper' ] 
sisgrammers = ['pkafei', 'LorenaABarba', 'jessicamckellar', 'heddle317', 'diana_clarke',
               'wholemilk', 'spang', 'cecilycarver', 'juliaelman', 'b0rk']

brotweets = []
for bro in brogrammers: 
    brotweets.extend(twitter_api.statuses.user_timeline(screen_name=bro, count=100))

sistweets = []
for sis in sisgrammers: 
    sistweets.extend(twitter_api.statuses.user_timeline(screen_name=sis, count=100))

2.2. Clean your data


In [ ]:
import re

def clean_tweet(tweet):
    """ Simplest preprocess.

    Convert a tweet to lowercarse and replace URLs and @username by a generic token

    Args:
        tweet (str): Tweet to clean.

    Returns:
        str: Preprocessed tweet
    """
    
    tweet = tweet.lower()
    
    # Remove URL and replace them with a token
    URL_REGEX = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
    tweet = re.sub(URL_REGEX, '<url>', tweet, flags=re.MULTILINE)
    
    # Remove usernames and replace them with a token
    tweet = re.sub("@([A-Za-z0-9_]+)", "<user>", tweet)

    # Remove repeated spaces
    tweet = re.sub(r"\s{2,}", " ", tweet)

    # If a character is repeated more than 4 time, keep only 3 repetitions.
    tweet = re.sub(r'(.)\1{4,}', r'\1\1\1', tweet)
    
    return tweet

In [ ]:
import pandas as pd

dataset = []
# Gather the text 
for tweet in brotweets:
    cleaned_tweet = clean_tweet(tweet['text'])
    dataset.append({'id': tweet['id'], 'text': cleaned_tweet, 'class': 0})
for tweet in sistweets:
    cleaned_tweet = clean_tweet(tweet['text'])
    dataset.append({'id': tweet['id'], 'text': cleaned_tweet, 'class': 1})

pd_dataset = pd.DataFrame(dataset)

In [ ]:
pd_dataset.head()

2.3. Share your data


In [ ]:
pd_dataset.to_csv('../corpora/full_dataset.csv')

In [ ]:
pd_dataset[['class', 'id']].to_csv('../corpora/ep16.csv')

2.4. Study your data


In [4]:
import pandas as pd

DATASET_PATH = "../corpora/full_dataset.csv"
pd_dataset = pd.DataFrame.from_csv(DATASET_PATH)
pd_dataset.head()


Out[4]:
class id text
0 0 752137929871462400 <user> great seeing you today!
1 0 751510274432131072 "i just wanted to check that you got my previo...
2 0 751374701344219136 rt <user>: <user> support for minor bugs may e...
3 0 751373414435328001 could be controversial, but frankly i think it...
4 0 751373066987573248 til that <user> plans to drop python 2 support...

In [5]:
import nltk.data
#nltk.download()

In [6]:
from nltk.tokenize import TweetTokenizer, word_tokenize
from nltk.corpus import stopwords
from collections import Counter
import re
import scipy.stats as stats

In [7]:
print(', '.join(stopwords.words('english')[:20]))


i, me, my, myself, we, our, ours, ourselves, you, your, yours, yourself, yourselves, he, him, his, himself, she, her, hers

In [8]:
def get_vocabulary(corpus, tokenizer):
    """ Get the vocabulary of a dataset. 

    Get a vocabulary of a set of tweets after removing stopwords, non letters, 
    and replacing each number by the token <number>

    Args:
        corpus (list of tweets): A list of tweets.
        tokenizer (function): tokenizer function. To get the tokens of each tweet.

    Returns:
        Counter: Vocabulary with the frequency of each word in it.
    """
    stop_words = stopwords.words('english')

    # Remove puntuation marks
    no_punks = [re.sub(r'\W', ' ', tweet) for tweet in corpus]
    
    # Tokenize and remove stop words
    clean_tokens = []
    for tweet in no_punks:
        # Replace different numbers with a token
        tweet = re.sub(r"\.\d+\s*", ".<number> ", tweet)
        tweet = re.sub(r"\d+\s*", " <number> ", tweet)
    
        tokens = tokenizer(tweet)
        tokens = [token for token in tokens if token not in stop_words]
        clean_tokens.extend(tokens)

    # Build the vocabulary
    return Counter(clean_tokens)

In [9]:
tknzr = TweetTokenizer()

brotweets = pd_dataset[pd_dataset['class'] == 0]['text'].tolist()
sistweets = pd_dataset[pd_dataset['class'] == 1]['text'].tolist()

brocabulary = get_vocabulary(brotweets, tknzr.tokenize)
siscabulary = get_vocabulary(sistweets, tknzr.tokenize)

In [10]:
brocabulary.most_common(10)


Out[10]:
[('user', 1313),
 ('url', 676),
 ('<number>', 483),
 ('rt', 420),
 ('python', 96),
 ('talk', 49),
 ('learning', 46),
 ('data', 45),
 ('new', 43),
 ('amp', 42)]

In [11]:
siscabulary.most_common(10)


Out[11]:
[('user', 1009),
 ('url', 419),
 ('<number>', 337),
 ('rt', 234),
 ('pycon', 54),
 ('one', 40),
 ('sgdq', 40),
 ('get', 39),
 ('like', 37),
 ('code', 30)]

In [12]:
from bokeh.plotting import figure, show, vplot, ColumnDataSource
from bokeh.io import output_notebook
from bokeh.models import HoverTool

output_notebook()


Loading BokehJS ...

In [13]:
MOST_COMMON = 50

mc_brocavulary = brocabulary.most_common(int(MOST_COMMON/2))
mc_siscavulary = siscabulary.most_common(int(MOST_COMMON/2))

fr_brocavulary, fr_siscavulary  = [], []
most_common_words = mc_brocavulary + mc_siscavulary
words = list(set(word for word, _ in most_common_words))
for word in words:
    if word in brocabulary:
        fr_brocavulary.append(brocabulary[word])
    else:
        fr_brocavulary.append(0)
    if word in siscabulary:
        fr_siscavulary.append(siscabulary[word])
    else:
        fr_siscavulary.append(0)

In [14]:
import numpy as np
range_words=list(range(1,len(words)+1))
source = ColumnDataSource(data=dict(range_words=range_words,
                                    words=words,
                                    freq_true=fr_brocavulary, 
                                    freq_false=fr_siscavulary))

hover = HoverTool()
hover.point_policy = "follow_mouse"
hover = HoverTool(
        tooltips=[
            ("words", "@words"),
        ]
    )

TOOLS="pan,wheel_zoom,box_zoom,reset,save"


p = figure(title = "Vocabulary gender", x_range=words, tools=[TOOLS, hover])
p.xaxis.axis_label = 'Words'
p.yaxis.axis_label = 'Frequency'
p.circle('range_words', 'freq_true', source=source, fill_alpha=0.2, size=10, color="navy")
p.circle('range_words', 'freq_false', source=source, fill_alpha=0.2, size=10, color='red')
p.xaxis.major_label_orientation = np.pi/4  

show(p)


Out[14]:

<Bokeh Notebook handle for In[14]>


In [15]:
tweet_lens_bro = [len(tweet) for tweet in brotweets]
hist_bro, edges_bro = np.histogram(tweet_lens_bro, density=True, bins=20)
tweet_lens_bro.sort()

tweet_lens_sis = [len(tweet) for tweet in sistweets]
hist_sis, edges_sis = np.histogram(tweet_lens_sis, density=True, bins=20)
tweet_lens_sis.sort()

p = figure(title="")
p.quad(top=hist_bro, bottom=0, left=edges_bro[:-1], right=edges_bro[1:],
        fill_color="navy", line_color="#033649", fill_alpha=0.3)
p.quad(top=hist_sis, bottom=0, left=edges_sis[:-1], right=edges_sis[1:],
        fill_color="red", line_color="#033649", fill_alpha=0.3)

sigma =  np.std(tweet_lens_bro)
mu = np.mean(tweet_lens_bro)
pdf = stats.norm.pdf(tweet_lens_bro, mu, sigma)
p.line(tweet_lens_bro, pdf, line_color="navy", line_width=6, alpha=0.7, legend="PDF")

sigma =  np.std(tweet_lens_sis)
mu = np.mean(tweet_lens_sis)
pdf = stats.norm.pdf(tweet_lens_sis, mu, sigma)
p.line(tweet_lens_sis, pdf, line_color="red", line_width=6, alpha=0.7, legend="PDF")

p.xaxis.axis_label = 'len(tweets)'
p.yaxis.axis_label = '# tweets'
show(p)


Out[15]:

<Bokeh Notebook handle for In[15]>

2.5. Split your data in train and test

(and probably share it too)


In [16]:
from sklearn import cross_validation
X = pd_dataset['text'].tolist()
y = pd_dataset['class'].tolist()

X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.4, random_state=0)
print("Examples in train: {}".format(len(X_train)))
print("Examples in test: {}".format(len(X_test)))


Examples in train: 1200
Examples in test: 800

3. In the beginning we had a bag of words (or maybe the set)

3.1. What is a bag of words

  • Simplest way to represent text.
  • Create a vector with the size of the vocabulary seen in train.
  • Each sentence is represented counting the number of times each word appears.
dataset = ["I love Python", "I love NLP", "Pyladies are cool"]
vocabulary = set(["I", "love", "Python", "NLP", "Pyladies", "are", "cool"])
dataset_representation =  [[1,1,1,0,0,0,0], 
                           [1,1,0,1,0,0,0],
                           [0,0,0,0,1,1,1]]

Ok, that looks cool. This look solved. Let's party!

3.2. So, what's the problem, then?

  • Unseen words.
  • One-hot Representation: Represents every word as an $\mathbb{R}^{|V|×1}$
    hotel = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
    motel = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
    w hotel AN D w motel = 0
    
    $w^{hotel} AND w^{motel} = 0  

 

  • The curse of dimensionality!!!
    • Generalizing locally (eg. nearest neighbors) requires representative examples for all relevant variations
    • The number of possible configurations of the variables of interest is much larger than the number of training samples.

 


In [17]:
from sklearn.feature_extraction.text import CountVectorizer

vectorizer = CountVectorizer(analyzer = "word", 
                             tokenizer = None,
                             preprocessor = None,
                             stop_words = None,
                             ngram_range=(1, 1),
                             max_features = 5000) 

# Fit the train
BOW_train = vectorizer.fit_transform(X_train)
BOW_train = BOW_train.toarray()

# Transform the test
BOW_test = vectorizer.transform(X_test)
BOW_test = BOW_test.toarray()


print('Train: {{0|1}}^({}x{})'.format(BOW_train.shape[0], BOW_train.shape[1]))
print('Test:  {{0|1}}^({}x{})'.format(BOW_test.shape[0], BOW_test.shape[1]))
vocab = vectorizer.get_feature_names()
print('\nVOCABULARY EXTRACT: {}'.format(', '.join(vocab[500:600])))
np.set_printoptions(threshold=np.nan)
print('\nTWEET REPRESENTATION: {}'.format(BOW_train[0]))


Train: {0|1}^(1200x4060)
Test:  {0|1}^(800x4060)

VOCABULARY EXTRACT: broke, broken, brother, brownlee, browser, bruce, brunch, brutal, btw, bu, buddy, buffer, bug, bugfixes, buggy, bugs, build, building, built, bullies, bump, bunch, burnt, bursting, busy, but, butler, button, buy, buys, buzz, by, byegium, ca, cabin, cable, cableporn, caesar, caged, call, called, calling, calls, came, camp, campaign, camping, can, canada, candidate, cannot, capita, capitalism, capitalists, capn, captain, captains, capture, car, card, cardinality, cards, career, careful, caribbean, caring, carpentry, cars, cartoon, case, cash, cat, catch, categorical, catered, cats, catty, caught, causal, cause, caused, cc, celebrate, celebrating, cena, centenial, center, centrality, centre, century, cernan, certainly, ceval, cfd, cffi, cfp, chair, chalk, challenge, challenges

TWEET REPRESENTATION: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

4. Word embeddings

You shall know a word by the company it keeps.

-- J.R. Firth 1957:11

The holy grail in text representation!

Word2vec

Ok, we need to talk.

  • Word2vec is NOT an algorithm for learning word embeddings. Word2vec is a family of algorithms for learning word embeddings. You may want to talk about a skipgram model trained using negative sampling.
  • Word2vec is NOT the holy grail (If you don't understand it)
  • (Sligthly related note) Tensorflow is awesome, but we should get used to allocate memory

   

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems (pp. 3111-3119).

Now, we can go on.

  • With Word2vec algorithms are able to learn word embedings from unsupervised raw text.
  • Two algorithms are implemented:

    • Continuous Bag-of-Words model (CBOW)
      • Predicts target words (e.g. 'mat') from source context words ('the cat sits on the').
      • CBOW smoothes over a lot of the distributional information.
      • Useful for smaller datasets.
    • Skip-Gram model
      • Predicts source context words ('the cat sits on the') from target words (e.g. 'mat').
      • Treats each context-target pair as a new observation.
      • Useful for larger datasets
  • These algorithms are trained using:

    • Negative sampling.
    • Hierarchical Softmax

    Read the complete tutorial

   

Glove

Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global Vectors for Word Representation. In EMNLP (Vol. 14, pp. 1532-43).

GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Training is performed on aggregated global word-word co-occurrence statistics from a corpus, and the resulting representations showcase interesting linear substructures of the word vector space.

  • New global logbilinear regression model that combines the advantages of the two major model families in the literature:
    • Global matrix factorization
    • Local context window methods.

4.1. Pretrained data using GloVe


In [18]:
from os.path import join

In [19]:
import numpy as np

def load_glove_dict(glove_filepath):
    """ Build a dictionary with GloVe values. 

    Read the GloVe resource and build a dictionary where the key is the word 
    and the value its GloVe representation

    Args:
        glove_filepath (str): Path where the GloVe resource is.
        
    Returns:
        dict: Dictionary with GloVe data.
    """
    glove_embeddings = {}
    # TODO: check if the filepath exists
    with open(glove_filepath) as glove_file:
        for line in glove_file:
            split_line = line.split() 
            word, vector = split_line[0], np.asarray(split_line[1:])
            glove_embeddings[word] =  vector
    return glove_embeddings

In [20]:
GLOVE_PATH = '../../../resources/GloVe/twitter_dataset'

embedding_size = '25'
glove_file = join(GLOVE_PATH, 'glove.twitter.27B.' + embedding_size + 'd.txt')
glove_25 = load_glove_dict(glove_file)

In [21]:
embedding_size = '100'
glove_file = join(GLOVE_PATH, 'glove.twitter.27B.' + embedding_size + 'd.txt')
glove_100 = load_glove_dict(glove_file)

In [23]:
def get_most_common_vocab(most_common, vocabulary):
    """ Get the most common words in a vocabulary

    Args:
        most_common (int): Number of most common word that want to be retrieved.
        vocabulary (Counter): Vocabulary with words and frequencies of each word.
        
    Returns:
        set: set of most common words in this vocabulary.
    """
    most_common_words = vocabulary.most_common(int(most_common))
    return set(word for word, _ in most_common_words)


def get_words_to_plot(most_common, vocabulary, dictionary):
    words_to_plot = {}
    unseen_words = []
    for word in get_most_common_vocab(most_common, vocabulary):
        if word in dictionary:
            words_to_plot[word] = dictionary[word]
        else:
            unseen_words.append(word)
    return words_to_plot, unseen_words

In [24]:
from sklearn.manifold import TSNE

def plot_tsne(dictionary, most_common):
    tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
   
    words_to_plot_bros, unseen_words_bros = get_words_to_plot(most_common, brocabulary, dictionary)
    words_to_plot_sis, unseen_words_sis = get_words_to_plot(most_common, siscabulary, dictionary)

    low_dim_embs_bros = tsne.fit_transform(list(words_to_plot_bros.values()))
    low_dim_embs_sis = tsne.fit_transform(list(words_to_plot_sis.values()))
    
    words_bros = list(words_to_plot_bros.keys())
    range_words_bros=list(range(1,len(words_bros)+1))
    source_bros = ColumnDataSource(data=dict(range_words=range_words_bros,
                                             words_bros=words_bros,
                                             x=low_dim_embs_bros[:,0], 
                                             y=low_dim_embs_bros[:,1]))

    words_sis = list(words_to_plot_sis.keys())
    range_words_sis = list(range(1,len(words_sis)+1))
    source_sis = ColumnDataSource(data=dict(range_words=range_words_sis,
                                             words_sis=words_sis,
                                             x=low_dim_embs_sis[:,0], 
                                             y=low_dim_embs_sis[:,1]))
    
    
    hover = HoverTool()
    hover.point_policy = "follow_mouse"
    hover = HoverTool(
            tooltips=[
                ("words_bros", "@words_bros"),
                ("words_sis", "@words_sis"),
            ]
        )

    TOOLS="pan,wheel_zoom,box_zoom,reset,save"

    p = figure(title = "Word visualization", tools=[TOOLS, hover])
    p.circle('x', 'y', source=source_bros, fill_alpha=0.2, size=10, color='navy')
    p.circle('x', 'y', source=source_sis, fill_alpha=0.2, size=10, color='red')

    show(p)
    return set(unseen_words_bros + unseen_words_sis)

In [25]:
unseen_words = plot_tsne(glove_100, 1000)



In [26]:
print(', '.join(unseen_words))


europython, jmlr, datashader, preprint, print_statement, pypi, icml, numfocus, reproducibility, bibtex, jupyter, hyperparameter, euroscipy, seabikes, rwatch, uwsgi, ngcmsummeracademy, percona, numpy, joblib, cython, neuroimaging, iclr, prni, blacklivesmatter, polyconf, barbagroup, pydatabln, alifexv, wikitables, wssspe, colormap, brexit, factorization, sourceness, mcpenface, ohbm, dadaist, centenial, decoders, pydata, moogles, plotly, subsampling, orlandoshooting, benv, lstms, perceptron, nilearn, datascience, pyconopenspace, scipy, proxysql, prereleas, resnet, __past__, machinelearning, tensorflow, brainhack, ceval, pytn, matplotlib, cffi, sklearn, ipython, scikit, sparsity, prompt_toolkit, pyconca, cardinality, automl, openai, pydataparis, kubernetes, theano, pydatalondon, deeplearning, sgdq

In [27]:
def tokenize_dataset(tokenizer, dataset):
    tokenize_dataset = []
    for tweet in dataset:
        # Replace different numbers with a token
        tweet = re.sub(r"\.\d+\s*", ".<number> ", tweet)
        tweet = re.sub(r"\d+\s*", " <number> ", tweet)
        tokens = tokenizer(tweet)
        tokenize_dataset.append(tokens)
    return tokenize_dataset

In [28]:
X_train_tokenized = tokenize_dataset(TweetTokenizer().tokenize, X_train)
X_test_tokenized = tokenize_dataset(TweetTokenizer().tokenize, X_test)

In [29]:
def get_embeddings(dataset, dictionary, embedding_size):
    X_emebeddings = []
    for tweet in dataset:
        tweet_embeddings = []
        for word in tweet:
            if word in dictionary:
                tweet_embeddings.append(dictionary[word])
        if not tweet_embeddings:
            tweet_embeddings.append(np.zeros(embedding_size))
        # Each tweet would have a different number of words and ML techniques requiere fixed inputs. 
        X_emebeddings.append(np.mean(np.asarray(tweet_embeddings, dtype=np.float32), axis=0))
    return X_emebeddings

In [30]:
X_train_GloVe = get_embeddings(X_train_tokenized, glove_100, 100)
X_test_GloVe = get_embeddings(X_test_tokenized, glove_100, 100)

4.2. But I want to train word embeddings with my own data!


In [31]:
from gensim.models import word2vec

In [32]:
# Initialize and train the model (this will take some time)
model = word2vec.Word2Vec(X_train_tokenized, 
                          workers = 4,
                          size = 100,  
                          min_count = 1,     # How many times a word should appear to be taken into account
                          window = 5, 
                          sample = 1e-3 ,    # Downsample setting for frequent words
                          batch_words = 100) # Batches of examples passed to worker threads 

# This model won't be updated
model.init_sims(replace=True)

model_name = "word2vec"
model.save(model_name)

In [33]:
model.syn0.shape


Out[33]:
(4193, 100)

In [34]:
_ = plot_tsne(model, 1000)



In [35]:
model.most_similar("python")


Out[35]:
[('and', 0.9998661279678345),
 ('"', 0.9998612403869629),
 ('.', 0.9998607635498047),
 ('of', 0.9998567700386047),
 ('in', 0.9998563528060913),
 ('a', 0.9998547434806824),
 ('!', 0.9998537302017212),
 ('about', 0.9998530149459839),
 (',', 0.99985271692276),
 ('on', 0.9998509287834167)]

In [36]:
X_train_word2vec = get_embeddings(X_train_tokenized, model, 100)
X_test_word2vec = get_embeddings(X_test_tokenized, model, 100)

5. Now fight!


In [37]:
from sklearn import svm
from sklearn.metrics import classification_report, roc_curve, auc

In [38]:
clf = svm.SVC()
clf.fit(BOW_train, y_train)  
predicction_BOW = clf.predict(BOW_test)
target_names = ['Bros', 'Sis']
print(classification_report(y_test, predicction_BOW,  target_names=target_names))


             precision    recall  f1-score   support

       Bros       0.00      0.00      0.00       411
        Sis       0.49      1.00      0.65       389

avg / total       0.24      0.48      0.32       800


In [39]:
clf = svm.SVC()
clf.fit(X_train_GloVe, y_train)
predicction_GloVe = clf.predict(X_test_GloVe)
print(classification_report(y_test, predicction_GloVe,  target_names=target_names))


             precision    recall  f1-score   support

       Bros       0.66      0.60      0.62       411
        Sis       0.61      0.67      0.64       389

avg / total       0.63      0.63      0.63       800


In [40]:
clf = svm.SVC()
clf.fit(X_train_word2vec, y_train)
predicction_word2vec = clf.predict(X_test_word2vec)
print(classification_report(y_test, predicction_word2vec,  target_names=target_names))


             precision    recall  f1-score   support

       Bros       0.00      0.00      0.00       411
        Sis       0.49      1.00      0.65       389

avg / total       0.24      0.49      0.32       800

/Users/mai/Dev/tools/miniconda3/envs/ep16/lib/python3.5/site-packages/sklearn/metrics/classification.py:1074: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.
  'precision', 'predicted', average, warn_for)

In [41]:
false_positive_rate_bow, true_positive_rate_bow, _ = roc_curve(y_test, predicction_BOW)
roc_auc_bow = auc(false_positive_rate_bow, true_positive_rate_bow)

false_positive_rate_glove, true_positive_rate_glove, _ = roc_curve(y_test, predicction_GloVe)
roc_auc_glove = auc(false_positive_rate_glove, true_positive_rate_glove)

false_positive_rate_w2v, true_positive_rate_w2v, _ = roc_curve(y_test, predicction_word2vec)
roc_auc_w2v = auc(false_positive_rate_w2v, true_positive_rate_w2v)

In [42]:
from bokeh.palettes import Spectral6

p = figure(title="Receiver Operating Characteristic", tools=TOOLS)


p.line(false_positive_rate_bow, true_positive_rate_bow, legend='BoW ROC curve (area = {:.2f})'.format(roc_auc_bow), 
       line_color="green", line_width=2)
p.line(false_positive_rate_glove, true_positive_rate_glove, 
       legend='GloVE ROC curve (area = {:.2f})'.format(roc_auc_glove), 
       line_color="blue", line_width=2)
p.line(false_positive_rate_w2v, true_positive_rate_w2v, 
       legend='W2V ROC curve (area = {:.2f})'.format(roc_auc_w2v), 
       line_color="yellow", line_width=2)


p.line([0.0, 1.0], [0.0, 1.05], legend='Guessing', 
       line_color="gray", line_width=2, line_dash=(4, 4))

p.xaxis.axis_label = 'False Positive Rate'
p.yaxis.axis_label = 'True Positive Rate'

p.legend.location = 'bottom_right'
show(p)


Out[42]:

<Bokeh Notebook handle for In[42]>

6. Discussion

  • Science is NOT broken some scientist are.
  • Understand your algorithms.
  • If you have guessed that maybe the mean is not the best option for representing sentences you may want to use a Neural Network toolkit try Layers.

  • And finally ...

Thank you!

Nos vemos en la PyCon ES 2016