In [1]:
"""This tutorial introduces Contractive auto-encoders (cA) using Theano.

 They are based on auto-encoders as the ones used in Bengio et
 al. 2007.  An autoencoder takes an input x and first maps it to a
 hidden representation y = f_{\theta}(x) = s(Wx+b), parameterized by
 \theta={W,b}. The resulting latent representation y is then mapped
 back to a "reconstructed" vector z \in [0,1]^d in input space z =
 g_{\theta'}(y) = s(W'y + b').  The weight matrix W' can optionally be
 constrained such that W' = W^T, in which case the autoencoder is said
 to have tied weights. The network is trained such that to minimize
 the reconstruction error (the error between x and z).  Adding the
 squared Frobenius norm of the Jacobian of the hidden mapping h with
 respect to the visible units yields the contractive auto-encoder:

      - \sum_{k=1}^d[ x_k \log z_k + (1-x_k) \log( 1-z_k)]  + \| \frac{\partial h(x)}{\partial x} \|^2

 References :
   - S. Rifai, P. Vincent, X. Muller, X. Glorot, Y. Bengio: Contractive
   Auto-Encoders: Explicit Invariance During Feature Extraction, ICML-11

   - S. Rifai, X. Muller, X. Glorot, G. Mesnil, Y. Bengio, and Pascal
     Vincent. Learning invariant features through local space
     contraction. Technical Report 1360, Universite de Montreal

   - Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle: Greedy Layer-Wise
   Training of Deep Networks, Advances in Neural Information Processing
   Systems 19, 2007

"""
import math
import cPickle
import gzip
import os
import sys
import time
sys.path.append('../../../libs/')
import csv
from dateutil import parser
from datetime import timedelta

import numpy as np
import pandas as pd
import pickle
from sklearn.cross_validation import train_test_split
from sklearn import preprocessing
import sklearn
import scipy.stats as ss
import cPickle
import gzip
import os
import time
import numpy
import theano
import theano.tensor as T
from theano.tensor.shared_randomstreams import RandomStreams
import os.path
import IO_class
from IO_class import FileOperator
from sklearn import cross_validation
import sklearn
import numpy as np
import csv
from dateutil import parser
from datetime import timedelta

import numpy as np
import pandas as pd
import pdb
import pickle
import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.cross_validation import KFold
from sklearn import preprocessing
import sklearn
import scipy.stats as ss

import random
from DL_libs import *
from itertools import izip #new
import math
import cPickle
import gzip
import os
import sys
import time

import numpy

import theano
import theano.tensor as T


from logistic_sgd import load_data
from utils import tile_raster_images

import PIL.Image


class cA(object):
    """ Contractive Auto-Encoder class (cA)

    The contractive autoencoder tries to reconstruct the input with an
    additional constraint on the latent space. With the objective of
    obtaining a robust representation of the input space, we
    regularize the L2 norm(Froebenius) of the jacobian of the hidden
    representation with respect to the input. Please refer to Rifai et
    al.,2011 for more details.

    If x is the input then equation (1) computes the projection of the
    input into the latent space h. Equation (2) computes the jacobian
    of h with respect to x.  Equation (3) computes the reconstruction
    of the input, while equation (4) computes the reconstruction
    error and the added regularization term from Eq.(2).

    .. math::

        h_i = s(W_i x + b_i)                                             (1)

        J_i = h_i (1 - h_i) * W_i                                        (2)

        x' = s(W' h  + b')                                               (3)

        L = -sum_{k=1}^d [x_k \log x'_k + (1-x_k) \log( 1-x'_k)]
             + lambda * sum_{i=1}^d sum_{j=1}^n J_{ij}^2                 (4)

    """

    def __init__(self, numpy_rng, input=None, n_visible=784, n_hidden=100,
                 n_batchsize=1, W=None, bhid=None, bvis=None):
        """Initialize the cA class by specifying the number of visible units (the
        dimension d of the input ), the number of hidden units ( the dimension
        d' of the latent or hidden space ) and the contraction level. The
        constructor also receives symbolic variables for the input, weights and
        bias.

        :type numpy_rng: numpy.random.RandomState
        :param numpy_rng: number random generator used to generate weights

        :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams
        :param theano_rng: Theano random generator; if None is given
                     one is generated based on a seed drawn from `rng`

        :type input: theano.tensor.TensorType
        :param input: a symbolic description of the input or None for
                      standalone cA

        :type n_visible: int
        :param n_visible: number of visible units

        :type n_hidden: int
        :param n_hidden:  number of hidden units

        :type n_batchsize int
        :param n_batchsize: number of examples per batch

        :type W: theano.tensor.TensorType
        :param W: Theano variable pointing to a set of weights that should be
                  shared belong the dA and another architecture; if dA should
                  be standalone set this to None

        :type bhid: theano.tensor.TensorType
        :param bhid: Theano variable pointing to a set of biases values (for
                     hidden units) that should be shared belong dA and another
                     architecture; if dA should be standalone set this to None

        :type bvis: theano.tensor.TensorType
        :param bvis: Theano variable pointing to a set of biases values (for
                     visible units) that should be shared belong dA and another
                     architecture; if dA should be standalone set this to None

        """
        self.n_visible = n_visible
        self.n_hidden = n_hidden
        self.n_batchsize = n_batchsize
        # note : W' was written as `W_prime` and b' as `b_prime`
        if not W:
            # W is initialized with `initial_W` which is uniformely sampled
            # from -4*sqrt(6./(n_visible+n_hidden)) and
            # 4*sqrt(6./(n_hidden+n_visible))the output of uniform if
            # converted using asarray to dtype
            # theano.config.floatX so that the code is runable on GPU
            initial_W = numpy.asarray(numpy_rng.uniform(
                      low=-4 * numpy.sqrt(6. / (n_hidden + n_visible)),
                      high=4 * numpy.sqrt(6. / (n_hidden + n_visible)),
                      size=(n_visible, n_hidden)),
                                      dtype=theano.config.floatX)
            W = theano.shared(value=initial_W, name='W', borrow=True)

        if not bvis:
            bvis = theano.shared(value=numpy.zeros(n_visible,
                                                   dtype=theano.config.floatX),
                                 borrow=True)

        if not bhid:
            bhid = theano.shared(value=numpy.zeros(n_hidden,
                                                   dtype=theano.config.floatX),
                                 name='b',
                                 borrow=True)

        self.W = W
        # b corresponds to the bias of the hidden
        self.b = bhid
        # b_prime corresponds to the bias of the visible
        self.b_prime = bvis
        # tied weights, therefore W_prime is W transpose
        self.W_prime = self.W.T

        # if no input is given, generate a variable representing the input
        if input == None:
            # we use a matrix because we expect a minibatch of several
            # examples, each example being a row
            self.x = T.dmatrix(name='input')
        else:
            self.x = input

        self.params = [self.W, self.b, self.b_prime]

    def get_hidden_values(self, input):
        """ Computes the values of the hidden layer """
        return T.nnet.sigmoid(T.dot(input, self.W) + self.b)

    def get_jacobian(self, hidden, W):
        """Computes the jacobian of the hidden layer with respect to
        the input, reshapes are necessary for broadcasting the
        element-wise product on the right axis

        """
        return T.reshape(hidden * (1 - hidden),
                         (self.n_batchsize, 1, self.n_hidden)) * T.reshape(
                             W, (1, self.n_visible, self.n_hidden))

    def get_reconstructed_input(self, hidden):
        """Computes the reconstructed input given the values of the
        hidden layer

        """
        return  T.nnet.sigmoid(T.dot(hidden, self.W_prime) + self.b_prime)

    def get_cost_updates(self, contraction_level, learning_rate):
        """ This function computes the cost and the updates for one trainng
        step of the cA """

        y = self.get_hidden_values(self.x)
        z = self.get_reconstructed_input(y)
        J = self.get_jacobian(y, self.W)
        # note : we sum over the size of a datapoint; if we are using
        #        minibatches, L will be a vector, with one entry per
        #        example in minibatch
        self.L_rec = - T.sum(self.x * T.log(z) +
                             (1 - self.x) * T.log(1 - z),
                             axis=1)

        # Compute the jacobian and average over the number of samples/minibatch
        self.L_jacob = T.sum(J ** 2) / self.n_batchsize

        # note : L is now a vector, where each element is the
        #        cross-entropy cost of the reconstruction of the
        #        corresponding example of the minibatch. We need to
        #        compute the average of all these to get the cost of
        #        the minibatch
        cost = T.mean(self.L_rec) + contraction_level * T.mean(self.L_jacob)

        # compute the gradients of the cost of the `cA` with respect
        # to its parameters
        gparams = T.grad(cost, self.params)
        # generate the list of updates
        updates = []
        for param, gparam in zip(self.params, gparams):
            updates.append((param, param - learning_rate * gparam))

        return (cost, updates)


def test_cA(learning_rate=0.01, training_epochs=20,
            dataset='mnist.pkl.gz',
            batch_size=10, output_folder='cA_plots', contraction_level=.1):
    """
    This demo is tested on MNIST

    :type learning_rate: float
    :param learning_rate: learning rate used for training the contracting
                          AutoEncoder

    :type training_epochs: int
    :param training_epochs: number of epochs used for training

    :type dataset: string
    :param dataset: path to the picked dataset

    """
    f = gzip.open('mnist.pkl.gz', 'rb')
    train_set, valid_set, test_set = cPickle.load(f)
    
    train_set_x, train_set_y = train_set
    train_set_x = shared_dataset_X(train_set_x)
    train_set_y= shared_dataset_X(train_set_y)
    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()    # index to a [mini]batch
    x = T.matrix('x')  # the data is presented as rasterized images

    if not os.path.isdir(output_folder):
        os.makedirs(output_folder)
    os.chdir(output_folder)
    ####################################
    #        BUILDING THE MODEL        #
    ####################################

    rng = numpy.random.RandomState(123)

    ca = cA(numpy_rng=rng, input=x,
            n_visible=28 * 28, n_hidden=500, n_batchsize=batch_size)

    cost, updates = ca.get_cost_updates(contraction_level=contraction_level,
                                        learning_rate=learning_rate)

    train_ca = theano.function([index], [T.mean(ca.L_rec), ca.L_jacob],
                               updates=updates,
                               givens={x: train_set_x[index * batch_size:
                                                    (index + 1) * batch_size]})

    start_time = time.clock()

    ############
    # TRAINING #
    ############

    # go through training epochs
    for epoch in xrange(training_epochs):
        # go through trainng set
        c = []
        for batch_index in xrange(n_train_batches):
            c.append(train_ca(batch_index))

        c_array = numpy.vstack(c)
        print 'Training epoch %d, reconstruction cost ' % epoch, numpy.mean(
            c_array[0]), ' jacobian norm ', numpy.mean(numpy.sqrt(c_array[1]))

    end_time = time.clock()

    training_time = (end_time - start_time)

    print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((training_time) / 60.))
    image = PIL.Image.fromarray(tile_raster_images(
        X=ca.W.get_value(borrow=True).T,
        img_shape=(28, 28), tile_shape=(10, 10),
        tile_spacing=(1, 1)))

    image.save('cae_filters.png')

    os.chdir('../')


if __name__ == '__main__':
    test_cA()


/usr/local/lib/python2.7/dist-packages/scipy/spatial/__init__.py:91: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility
  from .qhull import *
/usr/local/lib/python2.7/dist-packages/scipy/spatial/__init__.py:91: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility
  from .qhull import *
/usr/local/lib/python2.7/dist-packages/scipy/lib/_util.py:35: DeprecationWarning: Module scipy.linalg.blas.fblas is deprecated, use scipy.linalg.blas instead
  DeprecationWarning)
Training epoch 0, reconstruction cost  589.571872577  jacobian norm  20.9938791886
Training epoch 1, reconstruction cost  115.13390224  jacobian norm  10.673699659
Training epoch 2, reconstruction cost  101.291018001  jacobian norm  10.134422748
Training epoch 3, reconstruction cost  94.220284334  jacobian norm  9.84685383242
Training epoch 4, reconstruction cost  89.5890225412  jacobian norm  9.64736166807
Training epoch 5, reconstruction cost  86.1490384385  jacobian norm  9.49857669084
Training epoch 6, reconstruction cost  83.4664242016  jacobian norm  9.38143172793
Training epoch 7, reconstruction cost  81.3512907826  jacobian norm  9.28327421556
Training epoch 8, reconstruction cost  79.6482831506  jacobian norm  9.19748922967
Training epoch 9, reconstruction cost  78.2066659332  jacobian norm  9.12143982155
Training epoch 10, reconstruction cost  76.9456192804  jacobian norm  9.05343287129
Training epoch 11, reconstruction cost  75.8435863545  jacobian norm  8.99151663486
Training epoch 12, reconstruction cost  74.8999458491  jacobian norm  8.9338049163
Training epoch 13, reconstruction cost  74.1060022563  jacobian norm  8.87925367541
Training epoch 14, reconstruction cost  73.4415396294  jacobian norm  8.8291852146
Training epoch 15, reconstruction cost  72.879630175  jacobian norm  8.78442892358
Training epoch 16, reconstruction cost  72.3729563995  jacobian norm  8.74324402838
Training epoch 17, reconstruction cost  71.8622392555  jacobian norm  8.70262903409
Training epoch 18, reconstruction cost  71.3049790204  jacobian norm  8.66103980493
Training epoch 19, reconstruction cost  70.6462751293  jacobian norm  8.61777944201
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-1-7f6f1c6583c7> in <module>()
    356 
    357 if __name__ == '__main__':
--> 358     test_cA()

<ipython-input-1-7f6f1c6583c7> in test_cA(learning_rate, training_epochs, dataset, batch_size, output_folder, contraction_level)
    343     training_time = (end_time - start_time)
    344 
--> 345     print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] +
    346                           ' ran for %.2fm' % ((training_time) / 60.))
    347     image = PIL.Image.fromarray(tile_raster_images(

NameError: global name '__file__' is not defined

In [28]:
class Solution:
    # @param s, a string
    # @return a list of strings
    def restoreIpAddresses(self, s):
        result = []
        tmp_items = []
        def rec_ip(depth, split_point, tmp_items, result):
            print 'tmp_items', depth, split_point, tmp_items
            if depth == 4 and split_point ==len(s)+1:
                result.append('.'.join(tmp_items))
            elif depth < 4 and len(s) - split_point <= (4-depth)*3:
                for i in range(1,4):
                    digits = s[split_point: split_point+i]
#                    print digits
                    if len(digits)>0:
                        if int(digits) < 256:
                            rec_ip(depth+1, split_point+i, tmp_items+[digits], result)
        rec_ip(0, 0, tmp_items, result)
        return result

In [31]:
a= Solution()
print a.restoreIpAddresses('111111111111111111111111111111111111111111111111111111111')


tmp_items 0 0 []
[]

In [32]:
m = 3
n = 4
a = [[None]*n]*m


/usr/lib/python2.7/dist-packages/nose/plugins/manager.py:405: UserWarning: Module decorator was already imported from /usr/lib/python2.7/dist-packages/decorator.pyc, but /usr/local/lib/python2.7/dist-packages is being added to sys.path
  import pkg_resources
---------------------------------------------------------------------------
ImportError                               Traceback (most recent call last)
<ipython-input-32-35223498d41e> in <module>()
     40 
     41 
---> 42 from logistic_sgd import load_data
     43 from utils import tile_raster_images
     44 

ImportError: No module named logistic_sgd

In [97]:
def divide(a, b):
	real = a / b
	remain = a % b
	decimal = []
	remainders = {}
	i = 0
	while remain != 0:
		if remain not in remainders:
			remainders[remain] = i
		else:
			decimal.insert(remainders[remain],'(')
			break
		remain *= 10
		digit, remain = divmod(remain, b)
		decimal.append(str(digit))
		i += 1
	if remain != 0:
		decimal.append(')')
	return str(real) + '.' + ''.join(decimal)

In [101]:
divide(1,7)


Out[101]:
'0.(142857)'

In [120]:
#filename = 'Untitled0.ipynb'
def longest_word(filename, lst):
    """
    """
    with open(filename,'r') as file_handle:
        long_word = None
        lenght = 0
        for line in file_handle:
            word = line.strip()
            if is_construct(word, lst) and len(word) > lenght:
                long_word = word
                lenght = len(word)
        return long_word

    
def is_construct(word, lst):
    """
    check whether the word can be constructed from the letter in the list
    Parameters:
        word: string 
    """
    result = True
    dict_letters = {}
    for letter in lst:
        dict_letters[letter] = True

    for char in word:
        if char not in dict_letters:
            result =  False
            break
    return result

def test():
    filename = 'test.txt'
    lst = ['a', 'b', 'c', 'd']
    print longest_word(filename, lst)

if __name__ == '__main__' :
    test()


ababab

In [121]:
class Node:
    def __init__(self, data, next = None):
        self.data  =  data
        self.next =  next
class Queue:
    def __init__(self):
        self.head = None
        self.tail =None
    def enqueue(self, item):
        if self.head == None:
            self.head = Node(item)
            self.tail =self.head
        else:
            self.tail.next = Node(item)
            self.tail = self.tail.next
    def dequeue(self):
        if self.head == None:
            pass
        else:
            item = self.head
            self.head = self.head.next
            return item

In [126]:
aq = Queue()
aq.enqueue(3)
aq.enqueue(5)
aq.enqueue(7)
print aq.dequeue().data
print aq.dequeue().data
print aq.dequeue().data
print aq.dequeue()


3
5
7
None

In [6]:
def move_tower(height, from_pole, to_pole, with_pole):
    if height >=1 :
        move_tower(height-1, from_pole, with_pole, to_pole)
        move_disk(from_pole, to_pole)
        move_tower(height-1, with_pole, to_pole, from_pole)
def move_disk(from_pole, to_pole):
    print 'move disk from %s to %s' % (from_pole, to_pole)

In [8]:
move_tower(3, 1,3,2 )


move disk from 1 to 3
move disk from 1 to 2
move disk from 3 to 2
move disk from 1 to 3
move disk from 2 to 1
move disk from 2 to 3
move disk from 1 to 3

In [11]:
def number_coins(coin_list, change):
    min_coins = change
    if change in coin_list:
        return 1
    else:
        for coin in [ i for i in coin_list if i < change]:
            n_coins = 1 +  number_coins(coin_list, change - coin)
            if n_coins < min_coins:
                min_coins = n_coins
    return min_coins

In [65]:
def binary_search(lst, item):
    if len(lst) == 0:
        return False
    elif len(lst) == 1:
        return True if lst[0] == item else False
    else:
        mid = len(lst) // 2 
        if item < lst[mid]:
            return binary_search(lst[ :mid], item)
        else:
            return binary_search(lst[mid:], item)

In [81]:
a = [2,3,4,4,4,4]
b = a
c = a

In [116]:
2**3


Out[116]:
8

In [114]:
a =3
a = a << 1
print int('111', 8)
bin(a)


73
Out[114]:
'0b110'

In [89]:
def merge_sort(lst):
    if len(lst)<= 1:
        return lst
    else:
        mid = len(lst) // 2
        left = mergesort(lst[ :mid])
        right  = mergesort(lst[mid: ])
        # merge
        i_left = 0
        i_right = 0
        i_lst = 0
        while i_left < len(left) and i_right < len(i_right):
            if left[i_left] <= right[i_right]:
                lst[i_lst] = left[i_left]
                i_left +=1


Out[89]:
[]

In [103]:
mstr = """hello
world
"""
um = unicode(mstr)

In [104]:
for i in um:
    print ord(i)


104
101
108
108
111
10
119
111
114
108
100
10