1
SVM
recall 36.8%
precision 41.0%
accuracy 41.9%
recall 47.4%
precision 55.1%
accuracy 54.4%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 52.000000 %
epoch 1, minibatch 8/8, test error of best model 32.000000 %
epoch 2, minibatch 8/8, validation error 52.000000 %
epoch 3, minibatch 8/8, validation error 52.000000 %
epoch 4, minibatch 8/8, validation error 52.000000 %
epoch 5, minibatch 8/8, validation error 52.000000 %
epoch 6, minibatch 8/8, validation error 50.500000 %
epoch 6, minibatch 8/8, test error of best model 36.000000 %
epoch 7, minibatch 8/8, validation error 49.000000 %
epoch 7, minibatch 8/8, test error of best model 39.000000 %
epoch 8, minibatch 8/8, validation error 47.500000 %
epoch 8, minibatch 8/8, test error of best model 41.000000 %
epoch 9, minibatch 8/8, validation error 49.500000 %
epoch 10, minibatch 8/8, validation error 49.500000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 67.1%
precision 51.5%
accuracy 51.5%
recall 67.6%
precision 48.4%
accuracy 47.8%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 52.000000 %
epoch 1, minibatch 8/8, test error of best model 32.000000 %
epoch 2, minibatch 8/8, validation error 52.000000 %
epoch 3, minibatch 8/8, validation error 52.000000 %
epoch 4, minibatch 8/8, validation error 52.000000 %
epoch 5, minibatch 8/8, validation error 52.000000 %
epoch 6, minibatch 8/8, validation error 50.500000 %
epoch 6, minibatch 8/8, test error of best model 36.000000 %
epoch 7, minibatch 8/8, validation error 49.000000 %
epoch 7, minibatch 8/8, test error of best model 39.000000 %
epoch 8, minibatch 8/8, validation error 47.500000 %
epoch 8, minibatch 8/8, test error of best model 41.000000 %
epoch 9, minibatch 8/8, validation error 49.500000 %
epoch 10, minibatch 8/8, validation error 49.500000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 67.1%
precision 51.5%
accuracy 51.5%
recall 67.6%
precision 48.4%
accuracy 47.8%
2
SVM
recall 51.5%
precision 50.7%
accuracy 50.8%
recall 65.3%
precision 59.2%
accuracy 60.2%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 10/10, validation error 48.000000 %
epoch 1, minibatch 10/10, test error of best model 66.000000 %
epoch 2, minibatch 10/10, validation error 48.000000 %
epoch 3, minibatch 10/10, validation error 48.000000 %
epoch 4, minibatch 10/10, validation error 48.000000 %
epoch 5, minibatch 10/10, validation error 48.000000 %
epoch 6, minibatch 10/10, validation error 48.000000 %
epoch 7, minibatch 10/10, validation error 48.000000 %
epoch 8, minibatch 10/10, validation error 48.000000 %
epoch 9, minibatch 10/10, validation error 48.000000 %
epoch 10, minibatch 10/10, validation error 48.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 0.0%
precision 0.0%
accuracy 50.0%
recall 0.0%
precision 0.0%
accuracy 49.2%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 10/10, validation error 48.000000 %
epoch 1, minibatch 10/10, test error of best model 66.000000 %
epoch 2, minibatch 10/10, validation error 48.000000 %
epoch 3, minibatch 10/10, validation error 48.000000 %
epoch 4, minibatch 10/10, validation error 48.000000 %
epoch 5, minibatch 10/10, validation error 48.000000 %
epoch 6, minibatch 10/10, validation error 48.000000 %
epoch 7, minibatch 10/10, validation error 48.000000 %
epoch 8, minibatch 10/10, validation error 48.000000 %
epoch 9, minibatch 10/10, validation error 48.000000 %
epoch 10, minibatch 10/10, validation error 48.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 0.0%
precision 0.0%
accuracy 50.0%
recall 0.0%
precision 0.0%
accuracy 49.2%
3
SVM
recall 63.8%
precision 46.8%
accuracy 45.7%
recall 54.8%
precision 53.8%
accuracy 53.9%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 10/10, validation error 45.500000 %
epoch 1, minibatch 10/10, test error of best model 42.000000 %
epoch 2, minibatch 10/10, validation error 45.500000 %
epoch 3, minibatch 10/10, validation error 54.500000 %
epoch 4, minibatch 10/10, validation error 54.500000 %
epoch 5, minibatch 10/10, validation error 53.000000 %
epoch 6, minibatch 10/10, validation error 53.000000 %
epoch 7, minibatch 10/10, validation error 52.500000 %
epoch 8, minibatch 10/10, validation error 52.000000 %
epoch 9, minibatch 10/10, validation error 52.500000 %
epoch 10, minibatch 10/10, validation error 51.500000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 39.8%
precision 58.8%
accuracy 56.3%
recall 36.2%
precision 52.5%
accuracy 51.7%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 10/10, validation error 45.500000 %
epoch 1, minibatch 10/10, test error of best model 42.000000 %
epoch 2, minibatch 10/10, validation error 45.500000 %
epoch 3, minibatch 10/10, validation error 54.500000 %
epoch 4, minibatch 10/10, validation error 54.500000 %
epoch 5, minibatch 10/10, validation error 53.000000 %
epoch 6, minibatch 10/10, validation error 53.000000 %
epoch 7, minibatch 10/10, validation error 52.500000 %
epoch 8, minibatch 10/10, validation error 52.000000 %
epoch 9, minibatch 10/10, validation error 52.500000 %
epoch 10, minibatch 10/10, validation error 51.500000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 39.8%
precision 58.8%
accuracy 56.3%
recall 36.2%
precision 52.5%
accuracy 51.7%
4
SVM
recall 55.9%
precision 54.1%
accuracy 54.2%
recall 55.7%
precision 57.7%
accuracy 57.4%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 55.000000 %
epoch 1, minibatch 8/8, test error of best model 41.000000 %
epoch 2, minibatch 8/8, validation error 55.000000 %
epoch 3, minibatch 8/8, validation error 55.000000 %
epoch 4, minibatch 8/8, validation error 45.000000 %
epoch 4, minibatch 8/8, test error of best model 59.000000 %
epoch 5, minibatch 8/8, validation error 45.000000 %
epoch 6, minibatch 8/8, validation error 45.000000 %
epoch 7, minibatch 8/8, validation error 45.500000 %
epoch 8, minibatch 8/8, validation error 45.000000 %
epoch 9, minibatch 8/8, validation error 46.000000 %
epoch 10, minibatch 8/8, validation error 45.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 17.0%
precision 67.0%
accuracy 53.1%
recall 15.3%
precision 69.2%
accuracy 54.2%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 55.000000 %
epoch 1, minibatch 8/8, test error of best model 41.000000 %
epoch 2, minibatch 8/8, validation error 55.000000 %
epoch 3, minibatch 8/8, validation error 55.000000 %
epoch 4, minibatch 8/8, validation error 45.000000 %
epoch 4, minibatch 8/8, test error of best model 59.000000 %
epoch 5, minibatch 8/8, validation error 45.000000 %
epoch 6, minibatch 8/8, validation error 45.000000 %
epoch 7, minibatch 8/8, validation error 45.500000 %
epoch 8, minibatch 8/8, validation error 45.000000 %
epoch 9, minibatch 8/8, validation error 46.000000 %
epoch 10, minibatch 8/8, validation error 45.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 17.0%
precision 67.0%
accuracy 53.1%
recall 15.3%
precision 69.2%
accuracy 54.2%
5
SVM
recall 64.4%
precision 58.5%
accuracy 59.3%
recall 58.7%
precision 55.0%
accuracy 55.3%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 52.000000 %
epoch 1, minibatch 8/8, test error of best model 41.000000 %
epoch 2, minibatch 8/8, validation error 52.000000 %
epoch 3, minibatch 8/8, validation error 48.000000 %
epoch 3, minibatch 8/8, test error of best model 59.000000 %
epoch 4, minibatch 8/8, validation error 48.000000 %
epoch 5, minibatch 8/8, validation error 48.500000 %
epoch 6, minibatch 8/8, validation error 44.000000 %
epoch 6, minibatch 8/8, test error of best model 49.000000 %
epoch 7, minibatch 8/8, validation error 42.500000 %
epoch 7, minibatch 8/8, test error of best model 42.000000 %
epoch 8, minibatch 8/8, validation error 42.500000 %
epoch 9, minibatch 8/8, validation error 43.000000 %
epoch 10, minibatch 8/8, validation error 42.500000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 62.1%
precision 53.8%
accuracy 53.8%
recall 64.4%
precision 55.1%
accuracy 55.9%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 52.000000 %
epoch 1, minibatch 8/8, test error of best model 41.000000 %
epoch 2, minibatch 8/8, validation error 52.000000 %
epoch 3, minibatch 8/8, validation error 48.000000 %
epoch 3, minibatch 8/8, test error of best model 59.000000 %
epoch 4, minibatch 8/8, validation error 48.000000 %
epoch 5, minibatch 8/8, validation error 48.500000 %
epoch 6, minibatch 8/8, validation error 44.000000 %
epoch 6, minibatch 8/8, test error of best model 49.000000 %
epoch 7, minibatch 8/8, validation error 42.500000 %
epoch 7, minibatch 8/8, test error of best model 42.000000 %
epoch 8, minibatch 8/8, validation error 42.500000 %
epoch 9, minibatch 8/8, validation error 43.000000 %
epoch 10, minibatch 8/8, validation error 42.500000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 62.1%
precision 53.8%
accuracy 53.8%
recall 64.4%
precision 55.1%
accuracy 55.9%
6
SVM
recall 45.6%
precision 49.1%
accuracy 49.1%
recall 52.9%
precision 56.2%
accuracy 55.9%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 51.000000 %
epoch 1, minibatch 8/8, test error of best model 57.000000 %
epoch 2, minibatch 8/8, validation error 51.000000 %
epoch 3, minibatch 8/8, validation error 51.000000 %
epoch 4, minibatch 8/8, validation error 51.000000 %
epoch 5, minibatch 8/8, validation error 51.000000 %
epoch 6, minibatch 8/8, validation error 51.000000 %
epoch 7, minibatch 8/8, validation error 51.000000 %
epoch 8, minibatch 8/8, validation error 51.000000 %
epoch 9, minibatch 8/8, validation error 51.000000 %
epoch 10, minibatch 8/8, validation error 51.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 0.0%
precision 0.0%
accuracy 50.6%
recall 0.0%
precision 0.0%
accuracy 50.0%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 51.000000 %
epoch 1, minibatch 8/8, test error of best model 57.000000 %
epoch 2, minibatch 8/8, validation error 51.000000 %
epoch 3, minibatch 8/8, validation error 51.000000 %
epoch 4, minibatch 8/8, validation error 51.000000 %
epoch 5, minibatch 8/8, validation error 51.000000 %
epoch 6, minibatch 8/8, validation error 51.000000 %
epoch 7, minibatch 8/8, validation error 51.000000 %
epoch 8, minibatch 8/8, validation error 51.000000 %
epoch 9, minibatch 8/8, validation error 51.000000 %
epoch 10, minibatch 8/8, validation error 51.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 0.0%
precision 0.0%
accuracy 50.6%
recall 0.0%
precision 0.0%
accuracy 50.0%
7
SVM
recall 66.2%
precision 51.8%
accuracy 52.3%
recall 63.6%
precision 54.9%
accuracy 55.7%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 9/9, validation error 51.500000 %
epoch 1, minibatch 9/9, test error of best model 35.000000 %
epoch 2, minibatch 9/9, validation error 56.500000 %
epoch 3, minibatch 9/9, validation error 51.500000 %
epoch 4, minibatch 9/9, validation error 51.500000 %
epoch 5, minibatch 9/9, validation error 51.500000 %
epoch 6, minibatch 9/9, validation error 51.500000 %
epoch 7, minibatch 9/9, validation error 51.500000 %
epoch 8, minibatch 9/9, validation error 51.500000 %
epoch 9, minibatch 9/9, validation error 51.500000 %
epoch 10, minibatch 9/9, validation error 51.500000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 100.0%
precision 50.1%
accuracy 50.1%
recall 100.0%
precision 50.0%
accuracy 50.0%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 9/9, validation error 51.500000 %
epoch 1, minibatch 9/9, test error of best model 35.000000 %
epoch 2, minibatch 9/9, validation error 56.500000 %
epoch 3, minibatch 9/9, validation error 51.500000 %
epoch 4, minibatch 9/9, validation error 51.500000 %
epoch 5, minibatch 9/9, validation error 51.500000 %
epoch 6, minibatch 9/9, validation error 51.500000 %
epoch 7, minibatch 9/9, validation error 51.500000 %
epoch 8, minibatch 9/9, validation error 51.500000 %
epoch 9, minibatch 9/9, validation error 51.500000 %
epoch 10, minibatch 9/9, validation error 51.500000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 100.0%
precision 50.1%
accuracy 50.1%
recall 100.0%
precision 50.0%
accuracy 50.0%
8
SVM
recall 58.7%
precision 50.7%
accuracy 50.8%
recall 52.8%
precision 55.7%
accuracy 55.4%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 49.000000 %
epoch 1, minibatch 8/8, test error of best model 63.000000 %
epoch 2, minibatch 8/8, validation error 49.000000 %
epoch 3, minibatch 8/8, validation error 49.000000 %
epoch 4, minibatch 8/8, validation error 51.000000 %
epoch 5, minibatch 8/8, validation error 51.000000 %
epoch 6, minibatch 8/8, validation error 51.000000 %
epoch 7, minibatch 8/8, validation error 51.000000 %
epoch 8, minibatch 8/8, validation error 50.500000 %
epoch 9, minibatch 8/8, validation error 51.000000 %
epoch 10, minibatch 8/8, validation error 48.500000 %
epoch 10, minibatch 8/8, test error of best model 38.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 94.5%
precision 50.6%
accuracy 50.8%
recall 96.8%
precision 50.4%
accuracy 50.8%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 49.000000 %
epoch 1, minibatch 8/8, test error of best model 63.000000 %
epoch 2, minibatch 8/8, validation error 49.000000 %
epoch 3, minibatch 8/8, validation error 49.000000 %
epoch 4, minibatch 8/8, validation error 51.000000 %
epoch 5, minibatch 8/8, validation error 51.000000 %
epoch 6, minibatch 8/8, validation error 51.000000 %
epoch 7, minibatch 8/8, validation error 51.000000 %
epoch 8, minibatch 8/8, validation error 50.500000 %
epoch 9, minibatch 8/8, validation error 51.000000 %
epoch 10, minibatch 8/8, validation error 48.500000 %
epoch 10, minibatch 8/8, test error of best model 38.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 94.5%
precision 50.6%
accuracy 50.8%
recall 96.8%
precision 50.4%
accuracy 50.8%
9
SVM
recall 0.0%
precision 0.0%
accuracy 50.0%
recall 64.3%
precision 57.4%
accuracy 58.3%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 52.500000 %
epoch 1, minibatch 8/8, test error of best model nan %
epoch 2, minibatch 8/8, validation error 52.500000 %
epoch 3, minibatch 8/8, validation error 47.500000 %
epoch 3, minibatch 8/8, test error of best model nan %
epoch 4, minibatch 8/8, validation error 47.500000 %
epoch 5, minibatch 8/8, validation error 47.500000 %
epoch 6, minibatch 8/8, validation error 35.500000 %
epoch 6, minibatch 8/8, test error of best model nan %
epoch 7, minibatch 8/8, validation error 47.500000 %
epoch 8, minibatch 8/8, validation error 47.000000 %
epoch 9, minibatch 8/8, validation error 49.000000 %
epoch 10, minibatch 8/8, validation error 50.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 92.4%
precision 50.5%
accuracy 50.7%
recall 22.2%
precision 50.0%
accuracy 50.0%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 52.500000 %
epoch 1, minibatch 8/8, test error of best model nan %
epoch 2, minibatch 8/8, validation error 52.500000 %
epoch 3, minibatch 8/8, validation error 47.500000 %
epoch 3, minibatch 8/8, test error of best model nan %
epoch 4, minibatch 8/8, validation error 47.500000 %
epoch 5, minibatch 8/8, validation error 47.500000 %
epoch 6, minibatch 8/8, validation error 35.500000 %
epoch 6, minibatch 8/8, test error of best model nan %
epoch 7, minibatch 8/8, validation error 47.500000 %
epoch 8, minibatch 8/8, validation error 47.000000 %
epoch 9, minibatch 8/8, validation error 49.000000 %
epoch 10, minibatch 8/8, validation error 50.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 92.4%
precision 50.5%
accuracy 50.7%
recall 22.2%
precision 50.0%
accuracy 50.0%
10
SVM
recall 66.1%
precision 50.7%
accuracy 50.9%
recall 62.2%
precision 55.9%
accuracy 56.5%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 9/9, validation error 53.000000 %
epoch 1, minibatch 9/9, test error of best model 56.000000 %
epoch 2, minibatch 9/9, validation error 47.000000 %
epoch 2, minibatch 9/9, test error of best model 44.000000 %
epoch 3, minibatch 9/9, validation error 53.000000 %
epoch 4, minibatch 9/9, validation error 47.000000 %
epoch 5, minibatch 9/9, validation error 52.000000 %
epoch 6, minibatch 9/9, validation error 50.500000 %
epoch 7, minibatch 9/9, validation error 52.500000 %
epoch 8, minibatch 9/9, validation error 52.500000 %
epoch 9, minibatch 9/9, validation error 52.500000 %
epoch 10, minibatch 9/9, validation error 52.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 0.8%
precision 57.1%
accuracy 50.2%
recall 0.0%
precision 0.0%
accuracy 50.0%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 9/9, validation error 53.000000 %
epoch 1, minibatch 9/9, test error of best model 56.000000 %
epoch 2, minibatch 9/9, validation error 47.000000 %
epoch 2, minibatch 9/9, test error of best model 44.000000 %
epoch 3, minibatch 9/9, validation error 53.000000 %
epoch 4, minibatch 9/9, validation error 47.000000 %
epoch 5, minibatch 9/9, validation error 52.000000 %
epoch 6, minibatch 9/9, validation error 50.500000 %
epoch 7, minibatch 9/9, validation error 52.500000 %
epoch 8, minibatch 9/9, validation error 52.500000 %
epoch 9, minibatch 9/9, validation error 52.500000 %
epoch 10, minibatch 9/9, validation error 52.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 0.8%
precision 57.1%
accuracy 50.2%
recall 0.0%
precision 0.0%
accuracy 50.0%
11
SVM
recall 59.3%
precision 53.0%
accuracy 53.4%
recall 56.2%
precision 55.6%
accuracy 55.6%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 6/6, validation error 52.000000 %
epoch 1, minibatch 6/6, test error of best model 41.000000 %
epoch 2, minibatch 6/6, validation error 52.000000 %
epoch 3, minibatch 6/6, validation error 52.000000 %
epoch 4, minibatch 6/6, validation error 52.000000 %
epoch 5, minibatch 6/6, validation error 52.000000 %
epoch 6, minibatch 6/6, validation error 56.000000 %
epoch 7, minibatch 6/6, validation error 55.000000 %
epoch 8, minibatch 6/6, validation error 55.000000 %
epoch 9, minibatch 6/6, validation error 55.000000 %
epoch 10, minibatch 6/6, validation error 56.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 61.6%
precision 54.0%
accuracy 54.7%
recall 55.9%
precision 49.3%
accuracy 49.2%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 6/6, validation error 52.000000 %
epoch 1, minibatch 6/6, test error of best model 41.000000 %
epoch 2, minibatch 6/6, validation error 52.000000 %
epoch 3, minibatch 6/6, validation error 52.000000 %
epoch 4, minibatch 6/6, validation error 52.000000 %
epoch 5, minibatch 6/6, validation error 52.000000 %
epoch 6, minibatch 6/6, validation error 56.000000 %
epoch 7, minibatch 6/6, validation error 55.000000 %
epoch 8, minibatch 6/6, validation error 55.000000 %
epoch 9, minibatch 6/6, validation error 55.000000 %
epoch 10, minibatch 6/6, validation error 56.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 61.6%
precision 54.0%
accuracy 54.7%
recall 55.9%
precision 49.3%
accuracy 49.2%
12
SVM
recall 68.2%
precision 55.6%
accuracy 56.8%
recall 63.1%
precision 58.1%
accuracy 58.8%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 7/7, validation error 47.000000 %
epoch 1, minibatch 7/7, test error of best model 66.000000 %
epoch 2, minibatch 7/7, validation error 53.000000 %
epoch 3, minibatch 7/7, validation error 47.000000 %
epoch 4, minibatch 7/7, validation error 47.000000 %
epoch 5, minibatch 7/7, validation error 47.000000 %
epoch 6, minibatch 7/7, validation error 47.000000 %
epoch 7, minibatch 7/7, validation error 47.000000 %
epoch 8, minibatch 7/7, validation error 48.000000 %
epoch 9, minibatch 7/7, validation error 43.000000 %
epoch 9, minibatch 7/7, test error of best model 58.000000 %
epoch 10, minibatch 7/7, validation error 41.000000 %
epoch 10, minibatch 7/7, test error of best model 48.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 42.9%
precision 57.6%
accuracy 55.3%
recall 42.4%
precision 56.0%
accuracy 54.5%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 7/7, validation error 47.000000 %
epoch 1, minibatch 7/7, test error of best model 66.000000 %
epoch 2, minibatch 7/7, validation error 53.000000 %
epoch 3, minibatch 7/7, validation error 47.000000 %
epoch 4, minibatch 7/7, validation error 47.000000 %
epoch 5, minibatch 7/7, validation error 47.000000 %
epoch 6, minibatch 7/7, validation error 47.000000 %
epoch 7, minibatch 7/7, validation error 47.000000 %
epoch 8, minibatch 7/7, validation error 48.000000 %
epoch 9, minibatch 7/7, validation error 43.000000 %
epoch 9, minibatch 7/7, test error of best model 58.000000 %
epoch 10, minibatch 7/7, validation error 41.000000 %
epoch 10, minibatch 7/7, test error of best model 48.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 42.9%
precision 57.6%
accuracy 55.3%
recall 42.4%
precision 56.0%
accuracy 54.5%
13
SVM
recall 0.0%
precision 0.0%
accuracy 50.0%
recall 60.6%
precision 58.7%
accuracy 59.0%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 48.000000 %
epoch 1, minibatch 8/8, test error of best model nan %
epoch 2, minibatch 8/8, validation error 48.000000 %
epoch 3, minibatch 8/8, validation error 48.000000 %
epoch 4, minibatch 8/8, validation error 48.000000 %
epoch 5, minibatch 8/8, validation error 48.000000 %
epoch 6, minibatch 8/8, validation error 48.000000 %
epoch 7, minibatch 8/8, validation error 48.000000 %
epoch 8, minibatch 8/8, validation error 48.000000 %
epoch 9, minibatch 8/8, validation error 48.000000 %
epoch 10, minibatch 8/8, validation error 48.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 100.0%
precision 49.3%
accuracy 49.3%
recall 100.0%
precision 50.0%
accuracy 50.0%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 48.000000 %
epoch 1, minibatch 8/8, test error of best model nan %
epoch 2, minibatch 8/8, validation error 48.000000 %
epoch 3, minibatch 8/8, validation error 48.000000 %
epoch 4, minibatch 8/8, validation error 48.000000 %
epoch 5, minibatch 8/8, validation error 48.000000 %
epoch 6, minibatch 8/8, validation error 48.000000 %
epoch 7, minibatch 8/8, validation error 48.000000 %
epoch 8, minibatch 8/8, validation error 48.000000 %
epoch 9, minibatch 8/8, validation error 48.000000 %
epoch 10, minibatch 8/8, validation error 48.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 100.0%
precision 49.3%
accuracy 49.3%
recall 100.0%
precision 50.0%
accuracy 50.0%
14
SVM
recall 54.4%
precision 55.4%
accuracy 55.3%
recall 55.4%
precision 57.2%
accuracy 57.0%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 6/6, validation error 62.000000 %
epoch 1, minibatch 6/6, test error of best model 43.000000 %
epoch 2, minibatch 6/6, validation error 62.000000 %
epoch 3, minibatch 6/6, validation error 62.000000 %
epoch 4, minibatch 6/6, validation error 38.000000 %
epoch 4, minibatch 6/6, test error of best model 57.000000 %
epoch 5, minibatch 6/6, validation error 38.000000 %
epoch 6, minibatch 6/6, validation error 38.000000 %
epoch 7, minibatch 6/6, validation error 38.000000 %
epoch 8, minibatch 6/6, validation error 38.000000 %
epoch 9, minibatch 6/6, validation error 38.000000 %
epoch 10, minibatch 6/6, validation error 38.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 0.0%
precision 0.0%
accuracy 48.0%
recall 0.0%
precision 0.0%
accuracy 50.0%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 6/6, validation error 62.000000 %
epoch 1, minibatch 6/6, test error of best model 43.000000 %
epoch 2, minibatch 6/6, validation error 62.000000 %
epoch 3, minibatch 6/6, validation error 62.000000 %
epoch 4, minibatch 6/6, validation error 38.000000 %
epoch 4, minibatch 6/6, test error of best model 57.000000 %
epoch 5, minibatch 6/6, validation error 38.000000 %
epoch 6, minibatch 6/6, validation error 38.000000 %
epoch 7, minibatch 6/6, validation error 38.000000 %
epoch 8, minibatch 6/6, validation error 38.000000 %
epoch 9, minibatch 6/6, validation error 38.000000 %
epoch 10, minibatch 6/6, validation error 38.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 0.0%
precision 0.0%
accuracy 48.0%
recall 0.0%
precision 0.0%
accuracy 50.0%
15
SVM
recall 55.4%
precision 50.8%
accuracy 50.9%
recall 54.6%
precision 55.5%
accuracy 55.4%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 53.500000 %
epoch 1, minibatch 8/8, test error of best model 56.000000 %
epoch 2, minibatch 8/8, validation error 53.500000 %
epoch 3, minibatch 8/8, validation error 53.500000 %
epoch 4, minibatch 8/8, validation error 53.500000 %
epoch 5, minibatch 8/8, validation error 53.500000 %
epoch 6, minibatch 8/8, validation error 53.500000 %
epoch 7, minibatch 8/8, validation error 54.000000 %
epoch 8, minibatch 8/8, validation error 54.000000 %
epoch 9, minibatch 8/8, validation error 54.500000 %
epoch 10, minibatch 8/8, validation error 54.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 1.9%
precision 53.3%
accuracy 50.5%
recall 3.6%
precision 28.6%
accuracy 47.3%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 53.500000 %
epoch 1, minibatch 8/8, test error of best model 56.000000 %
epoch 2, minibatch 8/8, validation error 53.500000 %
epoch 3, minibatch 8/8, validation error 53.500000 %
epoch 4, minibatch 8/8, validation error 53.500000 %
epoch 5, minibatch 8/8, validation error 53.500000 %
epoch 6, minibatch 8/8, validation error 53.500000 %
epoch 7, minibatch 8/8, validation error 54.000000 %
epoch 8, minibatch 8/8, validation error 54.000000 %
epoch 9, minibatch 8/8, validation error 54.500000 %
epoch 10, minibatch 8/8, validation error 54.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 1.9%
precision 53.3%
accuracy 50.5%
recall 3.6%
precision 28.6%
accuracy 47.3%
16
SVM
recall 53.7%
precision 51.4%
accuracy 51.5%
recall 53.7%
precision 55.0%
accuracy 54.9%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 6/6, validation error 42.000000 %
epoch 1, minibatch 6/6, test error of best model 33.000000 %
epoch 2, minibatch 6/6, validation error 42.000000 %
epoch 3, minibatch 6/6, validation error 42.000000 %
epoch 4, minibatch 6/6, validation error 42.000000 %
epoch 5, minibatch 6/6, validation error 42.000000 %
epoch 6, minibatch 6/6, validation error 42.000000 %
epoch 7, minibatch 6/6, validation error 42.000000 %
epoch 8, minibatch 6/6, validation error 42.000000 %
epoch 9, minibatch 6/6, validation error 42.000000 %
epoch 10, minibatch 6/6, validation error 42.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 100.0%
precision 49.0%
accuracy 49.0%
recall 100.0%
precision 50.0%
accuracy 50.0%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 6/6, validation error 42.000000 %
epoch 1, minibatch 6/6, test error of best model 33.000000 %
epoch 2, minibatch 6/6, validation error 42.000000 %
epoch 3, minibatch 6/6, validation error 42.000000 %
epoch 4, minibatch 6/6, validation error 42.000000 %
epoch 5, minibatch 6/6, validation error 42.000000 %
epoch 6, minibatch 6/6, validation error 42.000000 %
epoch 7, minibatch 6/6, validation error 42.000000 %
epoch 8, minibatch 6/6, validation error 42.000000 %
epoch 9, minibatch 6/6, validation error 42.000000 %
epoch 10, minibatch 6/6, validation error 42.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 100.0%
precision 49.0%
accuracy 49.0%
recall 100.0%
precision 50.0%
accuracy 50.0%
17
SVM
recall 50.0%
precision 66.7%
accuracy 62.5%
recall 55.9%
precision 56.4%
accuracy 56.4%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 7/7, validation error 51.000000 %
epoch 1, minibatch 7/7, test error of best model nan %
epoch 2, minibatch 7/7, validation error 49.000000 %
epoch 2, minibatch 7/7, test error of best model nan %
epoch 3, minibatch 7/7, validation error 51.000000 %
epoch 4, minibatch 7/7, validation error 51.000000 %
epoch 5, minibatch 7/7, validation error 51.000000 %
epoch 6, minibatch 7/7, validation error 51.000000 %
epoch 7, minibatch 7/7, validation error 51.000000 %
epoch 8, minibatch 7/7, validation error 51.000000 %
epoch 9, minibatch 7/7, validation error 51.000000 %
epoch 10, minibatch 7/7, validation error 51.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 100.0%
precision 50.5%
accuracy 50.5%
recall 100.0%
precision 50.0%
accuracy 50.0%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 7/7, validation error 51.000000 %
epoch 1, minibatch 7/7, test error of best model nan %
epoch 2, minibatch 7/7, validation error 49.000000 %
epoch 2, minibatch 7/7, test error of best model nan %
epoch 3, minibatch 7/7, validation error 51.000000 %
epoch 4, minibatch 7/7, validation error 51.000000 %
epoch 5, minibatch 7/7, validation error 51.000000 %
epoch 6, minibatch 7/7, validation error 51.000000 %
epoch 7, minibatch 7/7, validation error 51.000000 %
epoch 8, minibatch 7/7, validation error 51.000000 %
epoch 9, minibatch 7/7, validation error 51.000000 %
epoch 10, minibatch 7/7, validation error 51.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 100.0%
precision 50.5%
accuracy 50.5%
recall 100.0%
precision 50.0%
accuracy 50.0%
18
SVM
recall 68.4%
precision 52.7%
accuracy 53.5%
recall 62.7%
precision 57.4%
accuracy 58.0%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 10/10, validation error 48.000000 %
epoch 1, minibatch 10/10, test error of best model 57.000000 %
epoch 2, minibatch 10/10, validation error 48.000000 %
epoch 3, minibatch 10/10, validation error 48.000000 %
epoch 4, minibatch 10/10, validation error 48.000000 %
epoch 5, minibatch 10/10, validation error 48.000000 %
epoch 6, minibatch 10/10, validation error 48.000000 %
epoch 7, minibatch 10/10, validation error 48.000000 %
epoch 8, minibatch 10/10, validation error 48.500000 %
epoch 9, minibatch 10/10, validation error 48.500000 %
epoch 10, minibatch 10/10, validation error 49.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 3.1%
precision 94.1%
accuracy 51.0%
recall 1.8%
precision 100.0%
accuracy 50.9%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 10/10, validation error 48.000000 %
epoch 1, minibatch 10/10, test error of best model 57.000000 %
epoch 2, minibatch 10/10, validation error 48.000000 %
epoch 3, minibatch 10/10, validation error 48.000000 %
epoch 4, minibatch 10/10, validation error 48.000000 %
epoch 5, minibatch 10/10, validation error 48.000000 %
epoch 6, minibatch 10/10, validation error 48.000000 %
epoch 7, minibatch 10/10, validation error 48.000000 %
epoch 8, minibatch 10/10, validation error 48.500000 %
epoch 9, minibatch 10/10, validation error 48.500000 %
epoch 10, minibatch 10/10, validation error 49.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 3.1%
precision 94.1%
accuracy 51.0%
recall 1.8%
precision 100.0%
accuracy 50.9%
19
SVM
recall 72.1%
precision 61.1%
accuracy 63.1%
recall 63.1%
precision 56.5%
accuracy 57.3%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 7/7, validation error 54.000000 %
epoch 1, minibatch 7/7, test error of best model 61.000000 %
epoch 2, minibatch 7/7, validation error 46.000000 %
epoch 2, minibatch 7/7, test error of best model 39.000000 %
epoch 3, minibatch 7/7, validation error 54.000000 %
epoch 4, minibatch 7/7, validation error 43.000000 %
epoch 4, minibatch 7/7, test error of best model 44.000000 %
epoch 5, minibatch 7/7, validation error 54.000000 %
epoch 6, minibatch 7/7, validation error 33.000000 %
epoch 6, minibatch 7/7, test error of best model 45.000000 %
epoch 7, minibatch 7/7, validation error 26.000000 %
epoch 7, minibatch 7/7, test error of best model 40.000000 %
epoch 8, minibatch 7/7, validation error 29.000000 %
epoch 9, minibatch 7/7, validation error 36.000000 %
epoch 10, minibatch 7/7, validation error 41.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 76.6%
precision 51.0%
accuracy 51.8%
recall 75.4%
precision 50.5%
accuracy 50.8%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 7/7, validation error 54.000000 %
epoch 1, minibatch 7/7, test error of best model 61.000000 %
epoch 2, minibatch 7/7, validation error 46.000000 %
epoch 2, minibatch 7/7, test error of best model 39.000000 %
epoch 3, minibatch 7/7, validation error 54.000000 %
epoch 4, minibatch 7/7, validation error 43.000000 %
epoch 4, minibatch 7/7, test error of best model 44.000000 %
epoch 5, minibatch 7/7, validation error 54.000000 %
epoch 6, minibatch 7/7, validation error 33.000000 %
epoch 6, minibatch 7/7, test error of best model 45.000000 %
epoch 7, minibatch 7/7, validation error 26.000000 %
epoch 7, minibatch 7/7, test error of best model 40.000000 %
epoch 8, minibatch 7/7, validation error 29.000000 %
epoch 9, minibatch 7/7, validation error 36.000000 %
epoch 10, minibatch 7/7, validation error 41.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 76.6%
precision 51.0%
accuracy 51.8%
recall 75.4%
precision 50.5%
accuracy 50.8%
20
SVM
recall 73.8%
precision 54.2%
accuracy 55.7%
recall 65.4%
precision 57.4%
accuracy 58.5%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 6/6, validation error 56.000000 %
epoch 1, minibatch 6/6, test error of best model 61.000000 %
epoch 2, minibatch 6/6, validation error 56.000000 %
epoch 3, minibatch 6/6, validation error 56.000000 %
epoch 4, minibatch 6/6, validation error 56.000000 %
epoch 5, minibatch 6/6, validation error 56.000000 %
epoch 6, minibatch 6/6, validation error 56.000000 %
epoch 7, minibatch 6/6, validation error 55.000000 %
epoch 7, minibatch 6/6, test error of best model 61.000000 %
epoch 8, minibatch 6/6, validation error 54.000000 %
epoch 8, minibatch 6/6, test error of best model 61.000000 %
epoch 9, minibatch 6/6, validation error 52.000000 %
epoch 9, minibatch 6/6, test error of best model 58.000000 %
epoch 10, minibatch 6/6, validation error 52.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 23.9%
precision 48.7%
accuracy 51.2%
recall 16.4%
precision 50.0%
accuracy 50.0%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 6/6, validation error 56.000000 %
epoch 1, minibatch 6/6, test error of best model 61.000000 %
epoch 2, minibatch 6/6, validation error 56.000000 %
epoch 3, minibatch 6/6, validation error 56.000000 %
epoch 4, minibatch 6/6, validation error 56.000000 %
epoch 5, minibatch 6/6, validation error 56.000000 %
epoch 6, minibatch 6/6, validation error 56.000000 %
epoch 7, minibatch 6/6, validation error 55.000000 %
epoch 7, minibatch 6/6, test error of best model 61.000000 %
epoch 8, minibatch 6/6, validation error 54.000000 %
epoch 8, minibatch 6/6, test error of best model 61.000000 %
epoch 9, minibatch 6/6, validation error 52.000000 %
epoch 9, minibatch 6/6, test error of best model 58.000000 %
epoch 10, minibatch 6/6, validation error 52.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 23.9%
precision 48.7%
accuracy 51.2%
recall 16.4%
precision 50.0%
accuracy 50.0%
21
SVM
recall 28.6%
precision 66.7%
accuracy 57.1%
recall 61.0%
precision 58.6%
accuracy 59.0%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 47.000000 %
epoch 1, minibatch 8/8, test error of best model nan %
epoch 2, minibatch 8/8, validation error 47.000000 %
epoch 3, minibatch 8/8, validation error 53.000000 %
epoch 4, minibatch 8/8, validation error 53.000000 %
epoch 5, minibatch 8/8, validation error 53.000000 %
epoch 6, minibatch 8/8, validation error 51.500000 %
epoch 7, minibatch 8/8, validation error 46.500000 %
epoch 7, minibatch 8/8, test error of best model nan %
epoch 8, minibatch 8/8, validation error 43.000000 %
epoch 8, minibatch 8/8, test error of best model nan %
epoch 9, minibatch 8/8, validation error 47.000000 %
epoch 10, minibatch 8/8, validation error 48.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 59.9%
precision 54.4%
accuracy 54.1%
recall 0.0%
precision 0.0%
accuracy 50.0%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 47.000000 %
epoch 1, minibatch 8/8, test error of best model nan %
epoch 2, minibatch 8/8, validation error 47.000000 %
epoch 3, minibatch 8/8, validation error 53.000000 %
epoch 4, minibatch 8/8, validation error 53.000000 %
epoch 5, minibatch 8/8, validation error 53.000000 %
epoch 6, minibatch 8/8, validation error 51.500000 %
epoch 7, minibatch 8/8, validation error 46.500000 %
epoch 7, minibatch 8/8, test error of best model nan %
epoch 8, minibatch 8/8, validation error 43.000000 %
epoch 8, minibatch 8/8, test error of best model nan %
epoch 9, minibatch 8/8, validation error 47.000000 %
epoch 10, minibatch 8/8, validation error 48.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 59.9%
precision 54.4%
accuracy 54.1%
recall 0.0%
precision 0.0%
accuracy 50.0%
22
SVM
recall 0.0%
precision 0.0%
accuracy 41.7%
recall 54.2%
precision 55.1%
accuracy 55.1%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 51.000000 %
epoch 1, minibatch 8/8, test error of best model nan %
epoch 2, minibatch 8/8, validation error 51.000000 %
epoch 3, minibatch 8/8, validation error 49.000000 %
epoch 3, minibatch 8/8, test error of best model nan %
epoch 4, minibatch 8/8, validation error 49.000000 %
epoch 5, minibatch 8/8, validation error 49.000000 %
epoch 6, minibatch 8/8, validation error 49.000000 %
epoch 7, minibatch 8/8, validation error 49.000000 %
epoch 8, minibatch 8/8, validation error 49.000000 %
epoch 9, minibatch 8/8, validation error 49.000000 %
epoch 10, minibatch 8/8, validation error 49.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 100.0%
precision 49.4%
accuracy 49.4%
recall 100.0%
precision 50.0%
accuracy 50.0%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 51.000000 %
epoch 1, minibatch 8/8, test error of best model nan %
epoch 2, minibatch 8/8, validation error 51.000000 %
epoch 3, minibatch 8/8, validation error 49.000000 %
epoch 3, minibatch 8/8, test error of best model nan %
epoch 4, minibatch 8/8, validation error 49.000000 %
epoch 5, minibatch 8/8, validation error 49.000000 %
epoch 6, minibatch 8/8, validation error 49.000000 %
epoch 7, minibatch 8/8, validation error 49.000000 %
epoch 8, minibatch 8/8, validation error 49.000000 %
epoch 9, minibatch 8/8, validation error 49.000000 %
epoch 10, minibatch 8/8, validation error 49.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 100.0%
precision 49.4%
accuracy 49.4%
recall 100.0%
precision 50.0%
accuracy 50.0%
23
SVM
recall 53.3%
precision 49.2%
accuracy 49.2%
recall 55.4%
precision 57.0%
accuracy 56.8%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 49.500000 %
epoch 1, minibatch 8/8, test error of best model 60.000000 %
epoch 2, minibatch 8/8, validation error 49.500000 %
epoch 3, minibatch 8/8, validation error 49.500000 %
epoch 4, minibatch 8/8, validation error 50.500000 %
epoch 5, minibatch 8/8, validation error 50.500000 %
epoch 6, minibatch 8/8, validation error 50.500000 %
epoch 7, minibatch 8/8, validation error 50.500000 %
epoch 8, minibatch 8/8, validation error 50.500000 %
epoch 9, minibatch 8/8, validation error 50.500000 %
epoch 10, minibatch 8/8, validation error 50.500000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 99.5%
precision 50.0%
accuracy 50.1%
recall 100.0%
precision 50.0%
accuracy 50.0%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 49.500000 %
epoch 1, minibatch 8/8, test error of best model 60.000000 %
epoch 2, minibatch 8/8, validation error 49.500000 %
epoch 3, minibatch 8/8, validation error 49.500000 %
epoch 4, minibatch 8/8, validation error 50.500000 %
epoch 5, minibatch 8/8, validation error 50.500000 %
epoch 6, minibatch 8/8, validation error 50.500000 %
epoch 7, minibatch 8/8, validation error 50.500000 %
epoch 8, minibatch 8/8, validation error 50.500000 %
epoch 9, minibatch 8/8, validation error 50.500000 %
epoch 10, minibatch 8/8, validation error 50.500000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 99.5%
precision 50.0%
accuracy 50.1%
recall 100.0%
precision 50.0%
accuracy 50.0%
24
SVM
recall 57.4%
precision 45.5%
accuracy 44.3%
recall 58.6%
precision 52.8%
accuracy 53.1%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 52.000000 %
epoch 1, minibatch 8/8, test error of best model 39.000000 %
epoch 2, minibatch 8/8, validation error 52.000000 %
epoch 3, minibatch 8/8, validation error 53.000000 %
epoch 4, minibatch 8/8, validation error 48.000000 %
epoch 4, minibatch 8/8, test error of best model 61.000000 %
epoch 5, minibatch 8/8, validation error 48.000000 %
epoch 6, minibatch 8/8, validation error 48.000000 %
epoch 7, minibatch 8/8, validation error 48.000000 %
epoch 8, minibatch 8/8, validation error 48.500000 %
epoch 9, minibatch 8/8, validation error 48.500000 %
epoch 10, minibatch 8/8, validation error 45.000000 %
epoch 10, minibatch 8/8, test error of best model 53.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 21.4%
precision 67.2%
accuracy 55.0%
recall 16.4%
precision 83.3%
accuracy 56.6%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 8/8, validation error 52.000000 %
epoch 1, minibatch 8/8, test error of best model 39.000000 %
epoch 2, minibatch 8/8, validation error 52.000000 %
epoch 3, minibatch 8/8, validation error 53.000000 %
epoch 4, minibatch 8/8, validation error 48.000000 %
epoch 4, minibatch 8/8, test error of best model 61.000000 %
epoch 5, minibatch 8/8, validation error 48.000000 %
epoch 6, minibatch 8/8, validation error 48.000000 %
epoch 7, minibatch 8/8, validation error 48.000000 %
epoch 8, minibatch 8/8, validation error 48.500000 %
epoch 9, minibatch 8/8, validation error 48.500000 %
epoch 10, minibatch 8/8, validation error 45.000000 %
epoch 10, minibatch 8/8, test error of best model 53.000000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 21.4%
precision 67.2%
accuracy 55.0%
recall 16.4%
precision 83.3%
accuracy 56.6%
25
SVM
recall 0.0%
precision 0.0%
accuracy 50.0%
recall 58.0%
precision 57.1%
accuracy 57.2%
direct deep learning
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 10/10, validation error 50.500000 %
epoch 1, minibatch 10/10, test error of best model nan %
epoch 2, minibatch 10/10, validation error 50.500000 %
epoch 3, minibatch 10/10, validation error 51.500000 %
epoch 4, minibatch 10/10, validation error 51.000000 %
epoch 5, minibatch 10/10, validation error 49.500000 %
epoch 5, minibatch 10/10, test error of best model nan %
epoch 6, minibatch 10/10, validation error 50.500000 %
epoch 7, minibatch 10/10, validation error 50.500000 %
epoch 8, minibatch 10/10, validation error 51.000000 %
epoch 9, minibatch 10/10, validation error 51.500000 %
epoch 10, minibatch 10/10, validation error 50.500000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 65.9%
precision 51.0%
accuracy 51.8%
recall 0.0%
precision 0.0%
accuracy 50.0%
deep learning with unlabel data
... building the model
... getting the pretraining functions
... pre-training the model
The pretraining code ran for 0.00m
... getting the finetuning functions
... finetunning the model
epoch 1, minibatch 10/10, validation error 50.500000 %
epoch 1, minibatch 10/10, test error of best model nan %
epoch 2, minibatch 10/10, validation error 50.500000 %
epoch 3, minibatch 10/10, validation error 51.500000 %
epoch 4, minibatch 10/10, validation error 51.000000 %
epoch 5, minibatch 10/10, validation error 49.500000 %
epoch 5, minibatch 10/10, test error of best model nan %
epoch 6, minibatch 10/10, validation error 50.500000 %
epoch 7, minibatch 10/10, validation error 50.500000 %
epoch 8, minibatch 10/10, validation error 51.000000 %
epoch 9, minibatch 10/10, validation error 51.500000 %
epoch 10, minibatch 10/10, validation error 50.500000 %
hidden_layers_sizes: [100, 100]
corruption_levels: [0, 0]
recall 65.9%
precision 51.0%
accuracy 51.8%
recall 0.0%
precision 0.0%
accuracy 50.0%
26
SVM
recall 0.0%
precision 0.0%
accuracy 50.0%
recall 52.7%
precision 56.6%
accuracy 56.1%
direct deep learning
... building the model
... getting the pretraining functions
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-58-bc27e0896ebe> in <module>()
----> 1 LOO_out_performance_for_all(ddis)
<ipython-input-57-ab5d0a3bd074> in LOO_out_performance_for_all(ddis)
42 for ddi in ddis:
43 one_ddi_family = LOO_out_performance_for_one_ddi(ddi)
---> 44 one_ddi_family.get_LOO_perfermance('FisherM1', '')
45
46 class LOO_out_performance_for_one_ddi(object):
<ipython-input-57-ab5d0a3bd074> in get_LOO_perfermance(self, fisher_mode, settings)
125 hidden_layers_sizes = hidden_layers_sizes, corruption_levels = corruption_levels, batch_size = batch_size , \
126 training_epochs = training_epochs, pretraining_epochs = pretraining_epochs,
--> 127 pretrain_lr = pretrain_lr, finetune_lr=finetune_lr
128 )
129 print 'hidden_layers_sizes:', hidden_layers_sizes
/home/sun/Downloads/contactmatrix/contactmatrixanddeeplearningcode/DL_libs.py in trainSda(X_train_minmax, y_train, X_validation_minmax, y_validation, X_test_minmax, y_test, pretraining_X_minmax, hidden_layers_sizes, corruption_levels, batch_size, training_epochs, pretraining_epochs, pretrain_lr, finetune_lr)
624 if pretraining_X_minmax == None:
625 pretraining_fns = sda.pretraining_functions(train_set_x=train_set_x,
--> 626 batch_size=batch_size)
627 else:
628 pretraining_X_minmax = shuffle(pretraining_X_minmax, random_state=0)
/home/sun/Downloads/contactmatrix/contactmatrixanddeeplearningcode/DL_libs.py in pretraining_functions(self, train_set_x, batch_size)
495 updates=updates,
496 givens={self.x: train_set_x[batch_begin:
--> 497 batch_end]})
498 # append `fn` to the list of functions
499 pretrain_fns.append(fn)
/usr/local/lib/python2.7/dist-packages/theano/compile/function.pyc in function(inputs, outputs, mode, updates, givens, no_default_updates, accept_inplace, name, rebuild_strict, allow_input_downcast, profile, on_unused_input)
221 allow_input_downcast=allow_input_downcast,
222 on_unused_input=on_unused_input,
--> 223 profile=profile)
224 # We need to add the flag check_aliased inputs if we have any mutable or
225 # borrowed used defined inputs
/usr/local/lib/python2.7/dist-packages/theano/compile/pfunc.pyc in pfunc(params, outputs, mode, updates, givens, no_default_updates, accept_inplace, name, rebuild_strict, allow_input_downcast, profile, on_unused_input)
510 return orig_function(inputs, cloned_outputs, mode,
511 accept_inplace=accept_inplace, name=name, profile=profile,
--> 512 on_unused_input=on_unused_input)
513
514
/usr/local/lib/python2.7/dist-packages/theano/compile/function_module.pyc in orig_function(inputs, outputs, mode, accept_inplace, name, profile, on_unused_input)
1309 accept_inplace=accept_inplace,
1310 profile=profile,
-> 1311 on_unused_input=on_unused_input).create(
1312 defaults)
1313
/usr/local/lib/python2.7/dist-packages/theano/compile/function_module.pyc in __init__(self, inputs, outputs, mode, accept_inplace, function_builder, profile, on_unused_input)
1020 gof.Op.add_stack_trace_on_call = False
1021 start_optimizer = time.time()
-> 1022 optimizer_profile = optimizer(fgraph)
1023 end_optimizer = time.time()
1024 opt_time = end_optimizer - start_optimizer
/usr/local/lib/python2.7/dist-packages/theano/gof/opt.pyc in __call__(self, fgraph)
89 Same as self.optimize(fgraph)
90 """
---> 91 return self.optimize(fgraph)
92
93 def add_requirements(self, fgraph):
/usr/local/lib/python2.7/dist-packages/theano/gof/opt.pyc in optimize(self, fgraph, *args, **kwargs)
80 orig = theano.tensor.basic.constant.enable
81 theano.tensor.basic.constant.enable = False
---> 82 ret = self.apply(fgraph, *args, **kwargs)
83 finally:
84 theano.tensor.basic.constant.enable = orig
/usr/local/lib/python2.7/dist-packages/theano/gof/opt.pyc in apply(self, fgraph)
181 try:
182 t0 = time.time()
--> 183 sub_prof = optimizer.optimize(fgraph)
184 l.append(float(time.time() - t0))
185 sub_profs.append(sub_prof)
/usr/local/lib/python2.7/dist-packages/theano/gof/opt.pyc in optimize(self, fgraph, *args, **kwargs)
80 orig = theano.tensor.basic.constant.enable
81 theano.tensor.basic.constant.enable = False
---> 82 ret = self.apply(fgraph, *args, **kwargs)
83 finally:
84 theano.tensor.basic.constant.enable = orig
/usr/local/lib/python2.7/dist-packages/theano/gof/opt.pyc in apply(self, fgraph, start_from)
1598 for lopt in self.local_optimizers:
1599 t_opt = time.time()
-> 1600 lopt_change = self.process_node(fgraph, node, lopt)
1601 time_opts[lopt] += time.time() - t_opt
1602 if lopt_change:
/usr/local/lib/python2.7/dist-packages/theano/gof/opt.pyc in process_node(self, fgraph, node, lopt)
1284 lopt = lopt or self.local_opt
1285 try:
-> 1286 replacements = lopt.transform(node)
1287 except Exception, e:
1288 if self.failure_callback is not None:
/usr/local/lib/python2.7/dist-packages/theano/gof/opt.pyc in transform(self, node)
1101 return pattern.clone()
1102 u = match(self.in_pattern, node.out, unify.Unification(), True,
-> 1103 self.pdb)
1104 if u:
1105 p = self.out_pattern
KeyboardInterrupt: