In [1]:
import h2o
import time
from h2o.estimators.glm import H2OGeneralizedLinearEstimator
from h2o.estimators.gbm import H2OGradientBoostingEstimator
from h2o.estimators.random_forest import H2ORandomForestEstimator
from h2o.estimators.deeplearning import H2ODeepLearningEstimator

In [2]:
# Explore a typical Data Science workflow with H2O and Python
#
# Goal: assist the manager of CitiBike of NYC to load-balance the bicycles
# across the CitiBike network of stations, by predicting the number of bike
# trips taken from the station every day.  Use 10 million rows of historical
# data, and eventually add weather data.


# Connect to a cluster
h2o.init()


Warning: Version mismatch. H2O is version (unknown), but the python package is version UNKNOWN.
H2O cluster uptime: 7 minutes 51 seconds 28 milliseconds
H2O cluster version: (unknown)
H2O cluster name: spIdea
H2O cluster total nodes: 1
H2O cluster total memory: 12.44 GB
H2O cluster total cores: 8
H2O cluster allowed cores: 8
H2O cluster healthy: True
H2O Connection ip: 127.0.0.1
H2O Connection port: 54321

In [3]:
from h2o.h2o import _locate # private function. used to find files within h2o git project directory.

# Set this to True if you want to fetch the data directly from S3.
# This is useful if your cluster is running in EC2.
data_source_is_s3 = False

def mylocate(s):
    if data_source_is_s3:
        return "s3n://h2o-public-test-data/" + s
    else:
        return _locate(s)

In [4]:
# Pick either the big or the small demo.
# Big data is 10M rows
small_test = [mylocate("bigdata/laptop/citibike-nyc/2013-10.csv")]
big_test =   [mylocate("bigdata/laptop/citibike-nyc/2013-07.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2013-08.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2013-09.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2013-10.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2013-11.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2013-12.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2014-01.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2014-02.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2014-03.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2014-04.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2014-05.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2014-06.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2014-07.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2014-08.csv")]

# ----------

# 1- Load data - 1 row per bicycle trip.  Has columns showing the start and end
# station, trip duration and trip start time and day.  The larger dataset
# totals about 10 million rows
print "Import and Parse bike data"
data = h2o.import_file(path=small_test)


Import and Parse bike data

Parse Progress: [##################################################] 100%

In [5]:
# ----------

# 2- light data munging: group the bike starts per-day, converting the 10M rows
# of trips to about 140,000 station&day combos - predicting the number of trip
# starts per-station-per-day.

# Convert start time to: Day since the Epoch
startime = data["starttime"]
secsPerDay=1000*60*60*24
data["Days"] = (startime/secsPerDay).floor()
data.describe()


Rows:1,037,712 Cols:15

Chunk compression summary:
chunk_type chunk_name count count_percentage size size_percentage
C0L Constant Integers 17 2.2135415 1.3 KB 0.0
CBS Bits 48 6.25 130.0 KB 0.2
C1N 1-Byte Integers (w/o NAs) 48 6.25 1016.6 KB 1.6816467
C1S 1-Byte Fractions 79 10.286459 1.6 MB 2.7740283
C2 2-Byte Integers 243 31.640625 10.0 MB 16.99867
C2S 2-Byte Fractions 49 6.3802085 2.0 MB 3.429456
C4 4-Byte Integers 32 4.166667 2.6 MB 4.4884815
C8 64-bit Integers 60 7.8125 9.9 MB 16.745453
C8D 64-bit Reals 192 25.0 31.7 MB 53.665054
Frame distribution summary:
size number_of_rows number_of_chunks_per_column number_of_chunks
172.16.2.52:54321 59.0 MB 1037712.0 48.0 768.0
mean 59.0 MB 1037712.0 48.0 768.0
min 59.0 MB 1037712.0 48.0 768.0
max 59.0 MB 1037712.0 48.0 768.0
stddev 0 B 0.0 0.0 0.0
total 59.0 MB 1037712.0 48.0 768.0

tripduration starttime stoptime start station id start station name start station latitude start station longitude end station id end station name end station latitude end station longitude bikeid usertype birth year gender Days
type int time time int enum real real int enum real real int enum int int int
mins 60.0 1.380610868e+12 1.380611083e+12 72.0 0.0 40.680342423 -74.01713445 72.0 0.0 40.680342423 -74.01713445 14529.0 0.0 1899.0 0.0 15979.0
mean 825.614754383 1.38191371692e+121.38191454253e+12443.714212614 NaN 40.7345188586 -73.9911328848 443.207421712 NaN 40.7342847885 -73.9912702982 17644.07164510.9060953328091975.778394861.12375591686 15993.8523906
maxs 1259480.0 1.383289197e+12 1.38341851e+12 3002.0 329.0 40.770513 -73.9500479759 3002.0 329.0 40.770513 -73.9500479759 20757.0 1.0 1997.0 2.0 16010.0
sigma 2000.3732323 778871729.132 778847387.503 354.434325075 NaN 0.0195734073053 0.0123161234106 357.398217058 NaN 0.0195578458116 0.0123855811965 1717.681121340.29169618212311.13149062380.5443805932919.02215033588
zeros 0 0 0 0 5239 0 0 0 5449 0 0 0 97446 0 97498 0
missing0 0 0 0 0 0 0 0 0 0 0 0 0 97445 0 0
0 326.0 1.380610868e+12 1.380611194e+12 239.0 Willoughby St & Fleet St40.69196566 -73.9813018 366.0 Clinton Ave & Myrtle Ave 40.693261 -73.968896 16052.0 Subscriber 1982.0 1.0 15979.0
1 729.0 1.380610881e+12 1.38061161e+12 322.0 Clinton St & Tillary St 40.696192 -73.991218 398.0 Atlantic Ave & Furman St 40.69165183 -73.9999786 19412.0 Customer nan 0.0 15979.0
2 520.0 1.380610884e+12 1.380611404e+12 174.0 E 25 St & 1 Ave 40.7381765 -73.97738662 403.0 E 2 St & 2 Ave 40.72502876 -73.99069656 19645.0 Subscriber 1984.0 1.0 15979.0
3 281.0 1.380610885e+12 1.380611166e+12 430.0 York St & Jay St 40.7014851 -73.98656928 323.0 Lawrence St & Willoughby St 40.69236178 -73.98631746 16992.0 Subscriber 1985.0 1.0 15979.0
4 196.0 1.380610887e+12 1.380611083e+12 403.0 E 2 St & 2 Ave 40.72502876 -73.99069656 401.0 Allen St & Rivington St 40.72019576 -73.98997825 15690.0 Subscriber 1986.0 1.0 15979.0
5 1948.0 1.380610908e+12 1.380612856e+12 369.0 Washington Pl & 6 Ave 40.73224119 -74.00026394 307.0 Canal St & Rutgers St 40.71427487 -73.98990025 19846.0 Subscriber 1977.0 1.0 15979.0
6 1327.0 1.380610908e+12 1.380612235e+12 254.0 W 11 St & 6 Ave 40.73532427 -73.99800419 539.0 Metropolitan Ave & Bedford Ave40.71534825 -73.96024116 14563.0 Subscriber 1986.0 2.0 15979.0
7 1146.0 1.380610917e+12 1.380612063e+12 490.0 8 Ave & W 33 St 40.751551 -73.993934 438.0 St Marks Pl & 1 Ave 40.72779126 -73.98564945 16793.0 Subscriber 1959.0 1.0 15979.0
8 380.0 1.380610918e+12 1.380611298e+12 468.0 Broadway & W 55 St 40.7652654 -73.98192338 385.0 E 55 St & 2 Ave 40.75797322 -73.96603308 16600.0 Customer nan 0.0 15979.0
9 682.0 1.380610925e+12 1.380611607e+12 300.0 Shevchenko Pl & E 6 St 40.728145 -73.990214 519.0 Pershing Square N 40.75188406 -73.97770164 15204.0 Subscriber 1992.0 1.0 15979.0

In [6]:
# Now do a monster Group-By.  Count bike starts per-station per-day.  Ends up
# with about 340 stations times 400 days (140,000 rows).  This is what we want
# to predict.
grouped = data.group_by(["Days","start station name"])
bpd = grouped.count().get_frame() # Compute bikes-per-day
bpd.set_name(2,"bikes")
bpd.show()
bpd.describe()
bpd.dim


Daysstart station name bikes
159809 Ave & W 18 St 137
15989Allen St & Hester St 110
16003Centre St & Chambers St 142
15995Concord St & Bridge St 21
15987E 14 St & Avenue B 113
160058 Ave & W 52 St 129
16009South St & Whitehall St 70
15989Pike St & E Broadway 55
15991Watts St & Greenwich St 101
15985Monroe St & Bedford Ave 15
Rows:10,450 Cols:3

Chunk compression summary:
chunk_type chunk_name count count_percentage size size_percentage
C1S 1-Byte Fractions 32 33.333336 12.8 KB 22.15888
C2 2-Byte Integers 64 66.66667 45.1 KB 77.84112
Frame distribution summary:
size number_of_rows number_of_chunks_per_column number_of_chunks
172.16.2.52:54321 57.9 KB 10450.0 32.0 96.0
mean 57.9 KB 10450.0 32.0 96.0
min 57.9 KB 10450.0 32.0 96.0
max 57.9 KB 10450.0 32.0 96.0
stddev 0 B 0.0 0.0 0.0
total 57.9 KB 10450.0 32.0 96.0

Days start station name bikes
type int enum int
mins 15979.0 0.0 1.0
mean 15994.4415311NaN 99.3025837321
maxs 16010.0 329.0 553.0
sigma 9.23370172444NaN 72.9721964301
zeros 0 32 0
missing0 0 0
0 15980.0 9 Ave & W 18 St 137.0
1 15989.0 Allen St & Hester St 110.0
2 16003.0 Centre St & Chambers St142.0
3 15995.0 Concord St & Bridge St 21.0
4 15987.0 E 14 St & Avenue B 113.0
5 16005.0 8 Ave & W 52 St 129.0
6 16009.0 South St & Whitehall St70.0
7 15989.0 Pike St & E Broadway 55.0
8 15991.0 Watts St & Greenwich St101.0
9 15985.0 Monroe St & Bedford Ave15.0
Out[6]:
[10450, 3]

In [7]:
# Quantiles: the data is fairly unbalanced; some station/day combos are wildly
# more popular than others.
print "Quantiles of bikes-per-day"
bpd["bikes"].quantile().show()


Quantiles of bikes-per-day
Probs bikesQuantiles
0.01 4.49
0.1 19
0.25 43
0.333 57
0.5 87
0.667 118
0.75 137
0.9 192
0.99 334.51

In [8]:
# A little feature engineering
# Add in month-of-year (seasonality; fewer bike rides in winter than summer)
secs = bpd["Days"]*secsPerDay
bpd["Month"]     = secs.month().asfactor()
# Add in day-of-week (work-week; more bike rides on Sunday than Monday)
bpd["DayOfWeek"] = secs.dayOfWeek()
print "Bikes-Per-Day"
bpd.describe()


Bikes-Per-Day
Rows:10,450 Cols:3

Chunk compression summary:
chunk_type chunk_name count count_percentage size size_percentage
CBS Bits 32 20.0 3.5 KB 4.709156
C1N 1-Byte Integers (w/o NAs) 32 20.0 12.3 KB 16.729826
C1S 1-Byte Fractions 32 20.0 12.8 KB 17.408241
C2 2-Byte Integers 64 40.0 45.1 KB 61.152775
Frame distribution summary:
size number_of_rows number_of_chunks_per_column number_of_chunks
172.16.2.52:54321 73.7 KB 10450.0 32.0 160.0
mean 73.7 KB 10450.0 32.0 160.0
min 73.7 KB 10450.0 32.0 160.0
max 73.7 KB 10450.0 32.0 160.0
stddev 0 B 0.0 0.0 0.0
total 73.7 KB 10450.0 32.0 160.0

Days start station name bikes Month DayOfWeek
type int enum int enum enum
mins 15979.0 0.0 1.0 0.0 0.0
mean 15994.4415311NaN 99.30258373210.968612440191NaN
maxs 16010.0 329.0 553.0 1.0 6.0
sigma 9.23370172444NaN 72.97219643010.174371128617NaN
zeros 0 32 0 328 1635
missing0 0 0 0 0
0 15980.0 9 Ave & W 18 St 137.0 10 Tue
1 15989.0 Allen St & Hester St 110.0 10 Thu
2 16003.0 Centre St & Chambers St142.0 10 Thu
3 15995.0 Concord St & Bridge St 21.0 10 Wed
4 15987.0 E 14 St & Avenue B 113.0 10 Tue
5 16005.0 8 Ave & W 52 St 129.0 10 Sat
6 16009.0 South St & Whitehall St70.0 10 Wed
7 15989.0 Pike St & E Broadway 55.0 10 Thu
8 15991.0 Watts St & Greenwich St101.0 10 Sat
9 15985.0 Monroe St & Bedford Ave15.0 10 Sun

In [9]:
# ----------
# 3- Fit a model on train; using test as validation

# Function for doing class test/train/holdout split
def split_fit_predict(data):
  global gbm0,drf0,glm0,dl0
  # Classic Test/Train split
  r = data['Days'].runif()   # Random UNIForm numbers, one per row
  train = data[  r  < 0.6]
  test  = data[(0.6 <= r) & (r < 0.9)]
  hold  = data[ 0.9 <= r ]
  print "Training data has",train.ncol,"columns and",train.nrow,"rows, test has",test.nrow,"rows, holdout has",hold.nrow
  bike_names_x = data.names
  bike_names_x.remove("bikes")
  
  # Run GBM
  s = time.time()
  
  gbm0 = H2OGradientBoostingEstimator(ntrees=500, # 500 works well
                                      max_depth=6,
                                      learn_rate=0.1)
    

  gbm0.train(x               =bike_names_x,
             y               ="bikes",
             training_frame  =train,
             validation_frame=test)

  gbm_elapsed = time.time() - s

  # Run DRF
  s = time.time()
    
  drf0 = H2ORandomForestEstimator(ntrees=250, max_depth=30)

  drf0.train(x               =bike_names_x,
             y               ="bikes",
             training_frame  =train,
             validation_frame=test)
    
  drf_elapsed = time.time() - s 
    
    
  # Run GLM
  if "WC1" in bike_names_x: bike_names_x.remove("WC1")
  s = time.time()

  glm0 = H2OGeneralizedLinearEstimator(Lambda=[1e-5], family="poisson")
    
  glm0.train(x               =bike_names_x,
             y               ="bikes",
             training_frame  =train,
             validation_frame=test)

  glm_elapsed = time.time() - s
  
  # Run DL
  s = time.time()

  dl0 = H2ODeepLearningEstimator(hidden=[50,50,50,50], epochs=50)
    
  dl0.train(x               =bike_names_x,
            y               ="bikes",
            training_frame  =train,
            validation_frame=test)
    
  dl_elapsed = time.time() - s
  
  # ----------
  # 4- Score on holdout set & report
  train_r2_gbm = gbm0.model_performance(train).r2()
  test_r2_gbm  = gbm0.model_performance(test ).r2()
  hold_r2_gbm  = gbm0.model_performance(hold ).r2()
#   print "GBM R2 TRAIN=",train_r2_gbm,", R2 TEST=",test_r2_gbm,", R2 HOLDOUT=",hold_r2_gbm
  
  train_r2_drf = drf0.model_performance(train).r2()
  test_r2_drf  = drf0.model_performance(test ).r2()
  hold_r2_drf  = drf0.model_performance(hold ).r2()
#   print "DRF R2 TRAIN=",train_r2_drf,", R2 TEST=",test_r2_drf,", R2 HOLDOUT=",hold_r2_drf
  
  train_r2_glm = glm0.model_performance(train).r2()
  test_r2_glm  = glm0.model_performance(test ).r2()
  hold_r2_glm  = glm0.model_performance(hold ).r2()
#   print "GLM R2 TRAIN=",train_r2_glm,", R2 TEST=",test_r2_glm,", R2 HOLDOUT=",hold_r2_glm
    
  train_r2_dl = dl0.model_performance(train).r2()
  test_r2_dl  = dl0.model_performance(test ).r2()
  hold_r2_dl  = dl0.model_performance(hold ).r2()
#   print " DL R2 TRAIN=",train_r2_dl,", R2 TEST=",test_r2_dl,", R2 HOLDOUT=",hold_r2_dl
    
  # make a pretty HTML table printout of the results

  header = ["Model", "R2 TRAIN", "R2 TEST", "R2 HOLDOUT", "Model Training Time (s)"]
  table  = [
            ["GBM", train_r2_gbm, test_r2_gbm, hold_r2_gbm, round(gbm_elapsed,3)],
            ["DRF", train_r2_drf, test_r2_drf, hold_r2_drf, round(drf_elapsed,3)],
            ["GLM", train_r2_glm, test_r2_glm, hold_r2_glm, round(glm_elapsed,3)],
            ["DL ", train_r2_dl,  test_r2_dl,  hold_r2_dl , round(dl_elapsed,3) ],
           ]
  h2o.H2ODisplay(table,header)
  # --------------

In [10]:
# Split the data (into test & train), fit some models and predict on the holdout data
split_fit_predict(bpd)
# Here we see an r^2 of 0.91 for GBM, and 0.71 for GLM.  This means given just
# the station, the month, and the day-of-week we can predict 90% of the
# variance of the bike-trip-starts.


Training data has 5 columns and 6289 rows, test has 3124 rows, holdout has 1037

gbm Model Build Progress: [##################################################] 100%

drf Model Build Progress: [##################################################] 100%

glm Model Build Progress: [##################################################] 100%

deeplearning Model Build Progress: [##################################################] 100%
Model R2 TRAIN R2 TEST R2 HOLDOUT Model Training Time (s)
GBM 1.0 0.9 0.9 6.753
DRF 0.8 0.8 0.8 5.624
GLM 0.9 0.8 0.8 0.144
DL 1.0 0.9 0.9 7.885

In [11]:
# ----------
# 5- Now lets add some weather
# Load weather data
wthr1 = h2o.import_file(path=[mylocate("bigdata/laptop/citibike-nyc/31081_New_York_City__Hourly_2013.csv"),
                               mylocate("bigdata/laptop/citibike-nyc/31081_New_York_City__Hourly_2014.csv")])
# Peek at the data
wthr1.describe()


Parse Progress: [##################################################] 100%
Rows:17,520 Cols:50

Chunk compression summary:
chunk_type chunk_name count count_percentage size size_percentage
C0L Constant Integers 107 6.294118 8.4 KB 0.7889721
C0D Constant Reals 436 25.647058 34.1 KB 3.2148771
CXI Sparse Integers 17 1.0 1.5 KB 0.1
C1 1-Byte Integers 346 20.352942 197.4 KB 18.634672
C1N 1-Byte Integers (w/o NAs) 214 12.588236 122.3 KB 11.544063
C1S 1-Byte Fractions 214 12.588236 125.3 KB 11.822968
C2S 2-Byte Fractions 196 11.529412 214.5 KB 20.242111
C4S 4-Byte Fractions 170 10.0 356.1 KB 33.612423
Frame distribution summary:
size number_of_rows number_of_chunks_per_column number_of_chunks
172.16.2.52:54321 1.0 MB 17520.0 34.0 1700.0
mean 1.0 MB 17520.0 34.0 1700.0
min 1.0 MB 17520.0 34.0 1700.0
max 1.0 MB 17520.0 34.0 1700.0
stddev 0 B 0.0 0.0 0.0
total 1.0 MB 17520.0 34.0 1700.0

Year Local Month Local Day Local Hour Local Year UTC Month UTC Day UTC Hour UTC Cavok Reported Cloud Ceiling (m) Cloud Cover Fraction Cloud Cover Fraction 1 Cloud Cover Fraction 2 Cloud Cover Fraction 3 Cloud Cover Fraction 4 Cloud Cover Fraction 5 Cloud Cover Fraction 6 Cloud Height (m) 1 Cloud Height (m) 2 Cloud Height (m) 3 Cloud Height (m) 4 Cloud Height (m) 5 Cloud Height (m) 6 Dew Point (C) Humidity Fraction Precipitation One Hour (mm) Pressure Altimeter (mbar) Pressure Sea Level (mbar) Pressure Station (mbar) Snow Depth (cm) Temperature (C) Visibility (km) Weather Code 1 Weather Code 1/ Description Weather Code 2 Weather Code 2/ Description Weather Code 3 Weather Code 3/ Description Weather Code 4 Weather Code 4/ Description Weather Code 5 Weather Code 5/ Description Weather Code 6 Weather Code 6/ Description Weather Code Most Severe / Icon Code Weather Code Most Severe Weather Code Most Severe / Description Wind Direction (degrees) Wind Gust (m/s) Wind Speed (m/s)
type int int int int int int int int int real real real real real int int int real real real int int int real real real real int int int real real int enum int enum int enum int enum int enum int enum int int enum int real real
mins 2013.0 1.0 1.0 0.0 2013.0 1.0 1.0 0.0 0.0 61.0 0.0 0.0 0.25 0.5 NaN NaN NaN 60.96 213.36 365.76 NaN NaN NaN -26.7 0.1251 0.0 983.2949 NaN NaN NaN -15.6 0.001 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 3.0 0.0 0.0 1.0 0.0 10.0 7.2 0.0
mean 2013.5 6.5260273972615.720547945211.5 2013.50057078 6.5251141552515.721347032 11.50011415530.0 1306.31195846 0.416742490522 0.361207349081 0.872445384073 0.963045685279 0.0 0.0 0.0 1293.9822682 1643.73900166 2084.89386376 0.0 0.0 0.0 4.31304646766 0.596736389159 1.37993010753 1017.82581441 0.0 0.0 0.0 12.5789090701 14.3914429682 4.84251968504 NaN 3.65867689358 NaN 2.84660766962 NaN 2.01149425287 NaN 4.125 NaN 3.0 0.0 1.37848173516 4.84251968504 NaN 194.69525682 9.42216948073 2.41032887849
maxs 2014.0 12.0 31.0 23.0 2015.0 12.0 31.0 23.0 0.0 3657.6 1.0 1.0 1.0 1.0 NaN NaN NaN 3657.5999 3657.5999 3657.5999 NaN NaN NaN 24.4 1.0 26.924 1042.2113 NaN NaN NaN 36.1 16.0934 60.0 11.0 60.0 10.0 36.0 7.0 27.0 4.0 27.0 2.0 3.0 0.0 16.0 60.0 11.0 360.0 20.58 10.8
sigma 0.5000142700173.447949723858.796498048526.922384111880.5005844117163.447824054588.795614888686.922301652030.0 995.339856966 0.462720830993 0.42770569708 0.197155690367 0.0861015598104 -0.0 -0.0 -0.0 962.743095854 916.73861349 887.215847511 -0.0 -0.0 -0.0 10.9731282097 0.185792011866 2.56215129179 7.46451697179 -0.0 -0.0 -0.0 10.0396739531 3.69893623033 5.70486576983 NaN 6.13386253912 NaN 5.80553286364 NaN 3.12340844261 NaN 6.15223536611 NaN 0.0 0.0 4.07386062702 5.70486576983 NaN 106.350000031 1.81511871115 1.61469790524
zeros 0 0 0 730 0 0 0 730 17455 0 8758 8758 0 0 -17520 -17520 -17520 0 0 0 -17520 -17520 -17520 268 0 501 0 -17520 -17520 -17520 269 0 0 17 0 30 0 13 -5044 -5024 -11241 -11229 -17030 -17028 14980 0 17 0 0 2768
missing0 0 0 0 0 0 0 0 65 10780 375 375 14682 16535 17520 17520 17520 9103 14683 16535 17520 17520 17520 67 67 15660 360 17520 17520 17520 67 412 14980 14980 16477 16477 17181 17181 17433 17433 17504 17504 17518 17518 0 14980 14980 9382 14381 1283
0 2013.0 1.0 1.0 0.0 2013.0 1.0 1.0 5.0 0.0 2895.6 1.0 0.9 1.0 nan nan nan nan 2895.5999 3352.8 nan nan nan nan -5.0 0.5447 nan 1013.0917 nan nan nan 3.3 16.0934 nan nan nan nan nan nan 0.0 nan nan nan 2.57
1 2013.0 1.0 1.0 1.0 2013.0 1.0 1.0 6.0 0.0 3048.0 1.0 1.0 nan nan nan nan nan 3048.0 nan nan nan nan nan -4.4 0.5463 nan 1012.0759 nan nan nan 3.9 16.0934 nan nan nan nan nan nan 0.0 nan 260.0 9.77 4.63
2 2013.0 1.0 1.0 2.0 2013.0 1.0 1.0 7.0 0.0 1828.8 1.0 1.0 nan nan nan nan nan 1828.7999 nan nan nan nan nan -3.3 0.619 nan 1012.4145 nan nan nan 3.3 16.0934 nan nan nan nan nan nan 0.0 nan nan 7.72 1.54
3 2013.0 1.0 1.0 3.0 2013.0 1.0 1.0 8.0 0.0 1463.0 1.0 1.0 nan nan nan nan nan 1463.04 nan nan nan nan nan -2.8 0.6159 nan 1012.4145 nan nan nan 3.9 16.0934 nan nan nan nan nan nan 0.0 nan nan nan 3.09
4 2013.0 1.0 1.0 4.0 2013.0 1.0 1.0 9.0 0.0 1402.1 1.0 1.0 nan nan nan nan nan 1402.08 nan nan nan nan nan -2.8 0.6159 nan 1012.7531 nan nan nan 3.9 16.0934 nan nan nan nan nan nan 0.0 nan 260.0 nan 4.12
5 2013.0 1.0 1.0 5.0 2013.0 1.0 1.0 10.0 0.0 1524.0 1.0 1.0 nan nan nan nan nan 1524.0 nan nan nan nan nan -2.8 0.6159 nan 1012.4145 nan nan nan 3.9 16.0934 nan nan nan nan nan nan 0.0 nan nan nan 3.09
6 2013.0 1.0 1.0 6.0 2013.0 1.0 1.0 11.0 0.0 1524.0 1.0 1.0 nan nan nan nan nan 1524.0 nan nan nan nan nan -3.3 0.5934 nan 1012.0759 nan nan nan 3.9 16.0934 nan nan nan nan nan nan 0.0 nan nan 9.26 3.09
7 2013.0 1.0 1.0 7.0 2013.0 1.0 1.0 12.0 0.0 1524.0 1.0 1.0 nan nan nan nan nan 1524.0 nan nan nan nan nan -3.3 0.5934 nan 1012.4145 nan nan nan 3.9 16.0934 nan nan nan nan nan nan 0.0 nan 260.0 9.26 4.63
8 2013.0 1.0 1.0 8.0 2013.0 1.0 1.0 13.0 0.0 1524.0 1.0 1.0 nan nan nan nan nan 1524.0 nan nan nan nan nan -2.8 0.6425 nan 1012.4145 nan nan nan 3.3 16.0934 nan nan nan nan nan nan 0.0 nan 260.0 nan 3.09
9 2013.0 1.0 1.0 9.0 2013.0 1.0 1.0 14.0 0.0 1524.0 1.0 0.9 1.0 nan nan nan nan 1524.0 3657.5999 nan nan nan nan -2.8 0.6159 nan 1012.4145 nan nan nan 3.9 16.0934 nan nan nan nan nan nan 0.0 nan nan 9.26 3.09

In [12]:
# Lots of columns in there!  Lets plan on converting to time-since-epoch to do
# a 'join' with the bike data, plus gather weather info that might affect
# cyclists - rain, snow, temperature.  Alas, drop the "snow" column since it's
# all NA's.  Also add in dew point and humidity just in case.  Slice out just
# the columns of interest and drop the rest.
wthr2 = wthr1[["Year Local","Month Local","Day Local","Hour Local","Dew Point (C)","Humidity Fraction","Precipitation One Hour (mm)","Temperature (C)","Weather Code 1/ Description"]]

wthr2.set_name(wthr2.names.index("Precipitation One Hour (mm)"), "Rain (mm)")
wthr2.set_name(wthr2.names.index("Weather Code 1/ Description"), "WC1")
wthr2.describe()
# Much better!


Rows:17,520 Cols:9

Chunk compression summary:
chunk_type chunk_name count count_percentage size size_percentage
C0L Constant Integers 46 15.0 3.6 KB 1.0267857
C1 1-Byte Integers 34 11.111112 19.4 KB 5.533482
C1N 1-Byte Integers (w/o NAs) 90 29.411766 51.5 KB 14.706473
CUD Unique Reals 103 33.660133 140.3 KB 40.09375
C8D 64-bit Reals 33 10.784314 135.2 KB 38.63951
Frame distribution summary:
size number_of_rows number_of_chunks_per_column number_of_chunks
172.16.2.52:54321 350.0 KB 17520.0 34.0 306.0
mean 350.0 KB 17520.0 34.0 306.0
min 350.0 KB 17520.0 34.0 306.0
max 350.0 KB 17520.0 34.0 306.0
stddev 0 B 0.0 0.0 0.0
total 350.0 KB 17520.0 34.0 306.0

Year Local Month Local Day Local Hour Local Dew Point (C) Humidity Fraction Rain (mm) Temperature (C) WC1
type int int int int real real real real enum
mins 2013.0 1.0 1.0 0.0 -26.7 0.1251 0.0 -15.6 0.0
mean 2013.5 6.5260273972615.720547945211.5 4.31304646766 0.596736389159 1.3799301075312.5789090701 NaN
maxs 2014.0 12.0 31.0 23.0 24.4 1.0 26.924 36.1 11.0
sigma 0.5000142700173.447949723858.796498048526.9223841118810.9731282097 0.185792011866 2.5621512917910.0396739531 NaN
zeros 0 0 0 730 268 0 501 269 17
missing0 0 0 0 67 67 15660 67 14980
0 2013.0 1.0 1.0 0.0 -5.0 0.5447 nan 3.3
1 2013.0 1.0 1.0 1.0 -4.4 0.5463 nan 3.9
2 2013.0 1.0 1.0 2.0 -3.3 0.619 nan 3.3
3 2013.0 1.0 1.0 3.0 -2.8 0.6159 nan 3.9
4 2013.0 1.0 1.0 4.0 -2.8 0.6159 nan 3.9
5 2013.0 1.0 1.0 5.0 -2.8 0.6159 nan 3.9
6 2013.0 1.0 1.0 6.0 -3.3 0.5934 nan 3.9
7 2013.0 1.0 1.0 7.0 -3.3 0.5934 nan 3.9
8 2013.0 1.0 1.0 8.0 -2.8 0.6425 nan 3.3
9 2013.0 1.0 1.0 9.0 -2.8 0.6159 nan 3.9

In [13]:
# Filter down to the weather at Noon
wthr3 = wthr2[ wthr2["Hour Local"]==12 ]

In [14]:
# Lets now get Days since the epoch... we'll convert year/month/day into Epoch
# time, and then back to Epoch days.  Need zero-based month and days, but have
# 1-based.
wthr3["msec"] = h2o.H2OFrame.mktime(year=wthr3["Year Local"], month=wthr3["Month Local"]-1, day=wthr3["Day Local"]-1, hour=wthr3["Hour Local"])
secsPerDay=1000*60*60*24
wthr3["Days"] = (wthr3["msec"]/secsPerDay).floor()
wthr3.describe()
# msec looks sane (numbers like 1.3e12 are in the correct range for msec since
# 1970).  Epoch Days matches closely with the epoch day numbers from the
# CitiBike dataset.


Rows:730 Cols:10

Chunk compression summary:
chunk_type chunk_name count count_percentage size size_percentage
C0L Constant Integers 80 21.390373 6.3 KB 12.498779
C0D Constant Reals 13 3.4759357 1.0 KB 2.0310516
C1 1-Byte Integers 30 8.021391 2.6 KB 5.2455816
C1N 1-Byte Integers (w/o NAs) 56 14.973262 4.9 KB 9.801778
C1S 1-Byte Fractions 34 9.090909 3.5 KB 7.0032225
C2S 2-Byte Fractions 34 9.090909 4.2 KB 8.4288645
CUD Unique Reals 25 6.6844916 3.6 KB 7.2297626
C8D 64-bit Reals 102 27.272728 23.9 KB 47.76096
Frame distribution summary:
size number_of_rows number_of_chunks_per_column number_of_chunks
172.16.2.52:54321 50.0 KB 730.0 34.0 374.0
mean 50.0 KB 730.0 34.0 374.0
min 50.0 KB 730.0 34.0 374.0
max 50.0 KB 730.0 34.0 374.0
stddev 0 B 0.0 0.0 0.0
total 50.0 KB 730.0 34.0 374.0

Year Local Month Local Day Local Hour Local Dew Point (C) Humidity Fraction Rain (mm) Temperature (C) WC1 msec Days
type int int int int real real real real enum int int
mins 2013.0 1.0 1.0 12.0 -26.7 0.1723 0.0 -13.9 0.0 1.3570704e+12 15706.0
mean 2013.5 6.5260273972615.720547945212.0 4.23012379642 0.539728198074 1.5312571428614.0687757909 NaN 1.3885608526e+1216070.5
maxs 2014.0 12.0 31.0 12.0 23.3 1.0 12.446 34.4 10.0 1.420056e+12 16435.0
sigma 0.5003428180043.450215293078.802278027010.0 11.1062964725 0.179945027923 2.3606424861510.3989855149 NaN 18219740080.4 210.877136425
zeros 0 0 0 0 14 0 -174 7 -83 0 0
missing0 0 0 0 3 3 660 3 620 0 0
0 2013.0 1.0 1.0 12.0 -3.3 0.5934 nan 3.9 1.3570704e+12 15706.0
1 2013.0 1.0 2.0 12.0 -11.7 0.4806 nan -2.2 1.3571568e+12 15707.0
2 2013.0 1.0 3.0 12.0 -10.6 0.5248 nan -2.2 1.3572432e+12 15708.0
3 2013.0 1.0 4.0 12.0 -7.2 0.4976 nan 2.2 1.3573296e+12 15709.0
4 2013.0 1.0 5.0 12.0 -7.2 0.426 nan 4.4 1.357416e+12 15710.0
5 2013.0 1.0 6.0 12.0 -1.7 0.6451 nan 4.4 haze 1.3575024e+12 15711.0
6 2013.0 1.0 7.0 12.0 -6.1 0.4119 nan 6.1 1.3575888e+12 15712.0
7 2013.0 1.0 8.0 12.0 -1.7 0.5314 nan 7.2 1.3576752e+12 15713.0
8 2013.0 1.0 9.0 12.0 0.6 0.56 nan 8.9 haze 1.3577616e+12 15714.0
9 2013.0 1.0 10.0 12.0 -6.1 0.3952 nan 6.7 1.357848e+12 15715.0

In [15]:
# Lets drop off the extra time columns to make a easy-to-handle dataset.
wthr4 = wthr3.drop("Year Local").drop("Month Local").drop("Day Local").drop("Hour Local").drop("msec")

In [16]:
# Also, most rain numbers are missing - lets assume those are zero rain days
rain = wthr4["Rain (mm)"]
rain[ rain.isna() ] = 0
wthr4["Rain (mm)"] = rain

In [17]:
# ----------
# 6 - Join the weather data-per-day to the bike-starts-per-day
print "Merge Daily Weather with Bikes-Per-Day"
bpd_with_weather = bpd.merge(wthr4,allLeft=True,allRite=False)
bpd_with_weather.describe()
bpd_with_weather.show()


Merge Daily Weather with Bikes-Per-Day
Rows:10,450 Cols:10

Chunk compression summary:
chunk_type chunk_name count count_percentage size size_percentage
C0L Constant Integers 32 10.0 2.5 KB 1.4274563
CBS Bits 32 10.0 3.5 KB 1.9817107
C1 1-Byte Integers 32 10.0 12.3 KB 7.0402584
C1N 1-Byte Integers (w/o NAs) 32 10.0 12.3 KB 7.0402584
C1S 1-Byte Fractions 32 10.0 12.8 KB 7.32575
C2 2-Byte Integers 64 20.0 45.1 KB 25.73436
CUD Unique Reals 96 30.000002 86.6 KB 49.450207
Frame distribution summary:
size number_of_rows number_of_chunks_per_column number_of_chunks
172.16.2.52:54321 175.1 KB 10450.0 32.0 320.0
mean 175.1 KB 10450.0 32.0 320.0
min 175.1 KB 10450.0 32.0 320.0
max 175.1 KB 10450.0 32.0 320.0
stddev 0 B 0.0 0.0 0.0
total 175.1 KB 10450.0 32.0 320.0

Days start station name bikes Month DayOfWeek Humidity Fraction Rain (mm) Temperature (C) WC1 Dew Point (C)
type int enum int enum enum real int real enum real
mins 15979.0 0.0 1.0 0.0 0.0 0.3485 0.0 9.4 2.0 -2.2
mean 15994.4415311NaN 99.30258373210.968612440191NaN 0.562374191388 0.0 16.9630717703 NaN 7.77999043062
maxs 16010.0 329.0 553.0 1.0 6.0 0.8718 0.0 26.1 8.0 19.4
sigma 9.23370172444NaN 72.97219643010.174371128617NaN 0.149631413472 0.0 4.29746634617 NaN 6.49151146664
zeros 0 32 0 328 1635 0 10450 0 0 0
missing0 0 0 0 0 0 0 0 9134 0
0 15980.0 9 Ave & W 18 St 137.0 10 Tue 0.5019 0.0 25.0 13.9
1 15989.0 Allen St & Hester St 110.0 10 Thu 0.8631 0.0 16.7 light rain14.4
2 16003.0 Centre St & Chambers St142.0 10 Thu 0.4578 0.0 9.4 -1.7
3 15995.0 Concord St & Bridge St 21.0 10 Wed 0.6765 0.0 20.6 14.4
4 15987.0 E 14 St & Avenue B 113.0 10 Tue 0.6455 0.0 14.4 7.8
5 16005.0 8 Ave & W 52 St 129.0 10 Sat 0.3818 0.0 12.8 -1.1
6 16009.0 South St & Whitehall St70.0 10 Wed 0.7265 0.0 18.3 13.3
7 15989.0 Pike St & E Broadway 55.0 10 Thu 0.8631 0.0 16.7 light rain14.4
8 15991.0 Watts St & Greenwich St101.0 10 Sat 0.6659 0.0 15.6 9.4
9 15985.0 Monroe St & Bedford Ave15.0 10 Sun 0.842 0.0 22.2 19.4
Daysstart station name bikes MonthDayOfWeek Humidity Fraction Rain (mm) Temperature (C)WC1 Dew Point (C)
159809 Ave & W 18 St 137 10Tue 0.5019 0 25 13.9
15989Allen St & Hester St 110 10Thu 0.8631 0 16.7light rain 14.4
16003Centre St & Chambers St 142 10Thu 0.4578 0 9.4 -1.7
15995Concord St & Bridge St 21 10Wed 0.6765 0 20.6 14.4
15987E 14 St & Avenue B 113 10Tue 0.6455 0 14.4 7.8
160058 Ave & W 52 St 129 10Sat 0.3818 0 12.8 -1.1
16009South St & Whitehall St 70 10Wed 0.7265 0 18.3 13.3
15989Pike St & E Broadway 55 10Thu 0.8631 0 16.7light rain 14.4
15991Watts St & Greenwich St 101 10Sat 0.6659 0 15.6 9.4
15985Monroe St & Bedford Ave 15 10Sun 0.842 0 22.2 19.4

In [18]:
# 7 - Test/Train split again, model build again, this time with weather
split_fit_predict(bpd_with_weather)


Training data has 10 columns and 6210 rows, test has 3167 rows, holdout has 1073

gbm Model Build Progress: [##################################################] 100%

drf Model Build Progress: [##################################################] 100%

glm Model Build Progress: [##################################################] 100%

deeplearning Model Build Progress: [##################################################] 100%
Model R2 TRAIN R2 TEST R2 HOLDOUT Model Training Time (s)
GBM 1.0 0.9 0.9 12.294
DRF 0.9 0.7 0.7 11.171
GLM 0.9 0.8 0.8 0.144
DL 1.0 0.9 0.9 9.004