In [40]:
import h2o
import time
from h2o.estimators.glm import H2OGeneralizedLinearEstimator
from h2o.estimators.gbm import H2OGradientBoostingEstimator
from h2o.estimators.random_forest import H2ORandomForestEstimator
from h2o.estimators.deeplearning import H2ODeepLearningEstimator




In [41]:
# Explore a typical Data Science workflow with H2O and Python
#
# Goal: assist the manager of CitiBike of NYC to load-balance the bicycles
# across the CitiBike network of stations, by predicting the number of bike
# trips taken from the station every day.  Use 10 million rows of historical
# data, and eventually add weather data.


# Connect to a cluster
h2o.init()


Warning: Version mismatch. H2O is version 3.5.0.99999, but the python package is version UNKNOWN.
H2O cluster uptime: 9 minutes 59 seconds 442 milliseconds
H2O cluster version: 3.5.0.99999
H2O cluster name: ludirehak
H2O cluster total nodes: 1
H2O cluster total memory: 4.44 GB
H2O cluster total cores: 8
H2O cluster allowed cores: 8
H2O cluster healthy: True
H2O Connection ip: 127.0.0.1
H2O Connection port: 54321

In [42]:
from h2o.h2o import _locate # private function. used to find files within h2o git project directory.

# Set this to True if you want to fetch the data directly from S3.
# This is useful if your cluster is running in EC2.
data_source_is_s3 = False

def mylocate(s):
    if data_source_is_s3:
        return "s3n://h2o-public-test-data/" + s
    else:
        return _locate(s)

In [43]:
# Pick either the big or the small demo.
# Big data is 10M rows
small_test = [mylocate("bigdata/laptop/citibike-nyc/2013-10.csv")]
big_test =   [mylocate("bigdata/laptop/citibike-nyc/2013-07.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2013-08.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2013-09.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2013-10.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2013-11.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2013-12.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2014-01.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2014-02.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2014-03.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2014-04.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2014-05.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2014-06.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2014-07.csv"),
              mylocate("bigdata/laptop/citibike-nyc/2014-08.csv")]

# ----------

# 1- Load data - 1 row per bicycle trip.  Has columns showing the start and end
# station, trip duration and trip start time and day.  The larger dataset
# totals about 10 million rows
print "Import and Parse bike data"
data = h2o.import_file(path=big_test)


Import and Parse bike data

Parse Progress: [##################################################] 100%

Parsed 10,407,546 rows and 15 cols:

File1 /Users/ludirehak/h2o-3/bigdata/laptop/citibike-nyc/2013-07.csv
File2 /Users/ludirehak/h2o-3/bigdata/laptop/citibike-nyc/2013-08.csv
File3 /Users/ludirehak/h2o-3/bigdata/laptop/citibike-nyc/2013-09.csv
File4 /Users/ludirehak/h2o-3/bigdata/laptop/citibike-nyc/2013-10.csv
File5 /Users/ludirehak/h2o-3/bigdata/laptop/citibike-nyc/2013-11.csv
File6 /Users/ludirehak/h2o-3/bigdata/laptop/citibike-nyc/2013-12.csv
File7 /Users/ludirehak/h2o-3/bigdata/laptop/citibike-nyc/2014-01.csv
File8 /Users/ludirehak/h2o-3/bigdata/laptop/citibike-nyc/2014-02.csv
File9 /Users/ludirehak/h2o-3/bigdata/laptop/citibike-nyc/2014-03.csv
File10 /Users/ludirehak/h2o-3/bigdata/laptop/citibike-nyc/2014-04.csv
File11 /Users/ludirehak/h2o-3/bigdata/laptop/citibike-nyc/2014-05.csv
File12 /Users/ludirehak/h2o-3/bigdata/laptop/citibike-nyc/2014-06.csv
File13 /Users/ludirehak/h2o-3/bigdata/laptop/citibike-nyc/2014-07.csv
File14 /Users/ludirehak/h2o-3/bigdata/laptop/citibike-nyc/2014-08.csv

In [44]:
# ----------

# 2- light data munging: group the bike starts per-day, converting the 10M rows
# of trips to about 140,000 station&day combos - predicting the number of trip
# starts per-station-per-day.

# Convert start time to: Day since the Epoch
startime = data["starttime"]
secsPerDay=1000*60*60*24
data["Days"] = (startime/secsPerDay).floor()
data.describe()


Rows: 10,407,546 Cols: 16

Chunk compression summary:
chunk_type chunk_name count count_percentage size size_percentage
C0L Constant Integers 117 1.5298117 9.1 KB 0.0
C1 1-Byte Integers 478 6.25 10.0 MB 1.7289143
C1N 1-Byte Integers (w/o NAs) 478 6.25 10.0 MB 1.7289143
C1S 1-Byte Fractions 839 10.970188 17.5 MB 3.042758
C2 2-Byte Integers 2616 34.20502 108.8 MB 18.8909
C2S 2-Byte Fractions 314 4.1056485 12.9 MB 2.2460942
C4 4-Byte Integers 214 2.7981172 17.9 MB 3.1005228
C4S 4-Byte Fractions 389 5.086297 32.4 MB 5.625424
C8 64-bit Integers 680 8.891213 113.5 MB 19.704786
C8D 64-bit Reals 1523 19.913704 253.0 MB 43.930134
Frame distribution summary:
size number_of_rows number_of_chunks_per_column number_of_chunks
172.16.2.37:54321 575.9 MB 10407546.0 478.0 7648.0
mean 575.9 MB 10407546.0 478.0 7648.0
min 575.9 MB 10407546.0 478.0 7648.0
max 575.9 MB 10407546.0 478.0 7648.0
stddev 0 B 0.0 0.0 0.0
total 575.9 MB 10407546.0 478.0 7648.0
Column-by-Column Summary:

tripduration starttime stoptime start station id start station name start station latitude start station longitude end station id end station name end station latitude end station longitude bikeid usertype birth year gender Days
type int time time int enum real real int enum real real int enum int int int
mins 60.0 1372662000000.0 1372662242000.0 72.0 0.0 40.7 -74.0 72.0 0.0 40.7 -74.0 14529.0 0.0 1899.0 0.0 15887.0
maxs 6250750.0 1409554787000.0 1409563605000.0 3002.0 339.0 40.771522 -74.0 3002.0 339.0 40.771522 -74.0 21689.0 1.0 1998.0 2.0 16314.0
mean 869.0 1390999858230.0 1391000727180.0 444.9 NaN 40.7 -74.0 445.3 NaN 40.7 -74.0 17895.7 0.9 1975.8 1.1 16099.0
sigma 2985.1 11806578171.7 11806555707.8 355.8 NaN 0.0 0.0 360.1 NaN 0.0 0.0 1938.8 0.3 11.1 0.6 136.6
zero_count 0 0 0 0 56836 0 0 0 55167 0 0 0 1247534 0 1248517 0
missing_count 0 0 0 0 0 0 0 0 0 0 0 0 0 1247644 0 0

In [45]:
# Now do a monster Group-By.  Count bike starts per-station per-day.  Ends up
# with about 340 stations times 400 days (140,000 rows).  This is what we want
# to predict.
grouped = data.group_by(["Days","start station name"])
bpd = grouped.count().get_frame() # Compute bikes-per-day
bpd.set_name(2,"bikes")
bpd.show()
bpd.describe()
bpd.dim


H2OFrame with 139261 rows and 3 columns: 
Days start station name bikes
0 16313 Greenwich St & N Moore St 74
1 15993 Henry St & Atlantic Ave 56
2 16057 Harrison St & Hudson St 13
3 16249 Greenwich St & Warren St 197
4 16121 Hanover Pl & Livingston St 2
5 16185 Hancock St & Bedford Ave 14
6 15966 Perry St & Bleecker St 101
7 16222 Park Pl & Church St 53
8 16158 Pearl St & Anchorage Pl 15
9 16286 Park Ave & St Edwards St 5
Rows: 139,261 Cols: 3

Chunk compression summary:
chunk_type chunk_name count count_percentage size size_percentage
C2 2-Byte Integers 96 100.0 822.4 KB 100.0
Frame distribution summary:
size number_of_rows number_of_chunks_per_column number_of_chunks
172.16.2.37:54321 822.4 KB 139261.0 32.0 96.0
mean 822.4 KB 139261.0 32.0 96.0
min 822.4 KB 139261.0 32.0 96.0
max 822.4 KB 139261.0 32.0 96.0
stddev 0 B 0.0 0.0 0.0
total 822.4 KB 139261.0 32.0 96.0
Column-by-Column Summary:

Days start station name bikes
type int enum int
mins 15887.0 0.0 1.0
maxs 16314.0 339.0 680.0
mean 16100.0 NaN 74.7
sigma 123.6 NaN 64.1
zero_count 0 428 0
missing_count 0 0 0
Out[45]:
[139261, 3]

In [46]:
# Quantiles: the data is fairly unbalanced; some station/day combos are wildly
# more popular than others.
print "Quantiles of bikes-per-day"
bpd["bikes"].quantile().show()


Quantiles of bikes-per-day
H2OFrame with 9 rows and 2 columns: 
Probs bikesQuantiles
0 0.010 2
1 0.100 11
2 0.250 26
3 0.333 35
4 0.500 58
5 0.667 89
6 0.750 107
7 0.900 157
8 0.990 291

In [47]:
# A little feature engineering
# Add in month-of-year (seasonality; fewer bike rides in winter than summer)
secs = bpd["Days"]*secsPerDay
bpd["Month"]     = secs.month().asfactor()
# Add in day-of-week (work-week; more bike rides on Sunday than Monday)
bpd["DayOfWeek"] = secs.dayOfWeek()
print "Bikes-Per-Day"
bpd.describe()


Bikes-Per-Day
Rows: 139,261 Cols: 5

Chunk compression summary:
chunk_type chunk_name count count_percentage size size_percentage
C1N 1-Byte Integers (w/o NAs) 64 40.0 276.2 KB 25.145071
C2 2-Byte Integers 96 60.000004 822.4 KB 74.85493
Frame distribution summary:
size number_of_rows number_of_chunks_per_column number_of_chunks
172.16.2.37:54321 1.1 MB 139261.0 32.0 160.0
mean 1.1 MB 139261.0 32.0 160.0
min 1.1 MB 139261.0 32.0 160.0
max 1.1 MB 139261.0 32.0 160.0
stddev 0 B 0.0 0.0 0.0
total 1.1 MB 139261.0 32.0 160.0
Column-by-Column Summary:

Days start station name bikes Month DayOfWeek
type int enum int enum enum
mins 15887.0 0.0 1.0 0.0 0.0
maxs 16314.0 339.0 680.0 11.0 6.0
mean 16100.0 NaN 74.7 NaN NaN
sigma 123.6 NaN 64.1 NaN NaN
zero_count 0 428 0 9949 19880
missing_count 0 0 0 0 0

In [48]:
# ----------
# 3- Fit a model on train; using test as validation

# Function for doing class test/train/holdout split
def split_fit_predict(data):
  global gbm0,drf0,glm0,dl0
  # Classic Test/Train split
  r = data['Days'].runif()   # Random UNIForm numbers, one per row
  train = data[  r  < 0.6]
  test  = data[(0.6 <= r) & (r < 0.9)]
  hold  = data[ 0.9 <= r ]
  print "Training data has",train.ncol,"columns and",train.nrow,"rows, test has",test.nrow,"rows, holdout has",hold.nrow
  bike_names_x = data.names
  bike_names_x.remove("bikes")
  
  # Run GBM
  s = time.time()
  
  gbm0 = H2OGradientBoostingEstimator(ntrees=500, # 500 works well
                                      max_depth=6,
                                      learn_rate=0.1)
    

  gbm0.train(x               =bike_names_x,
             y               ="bikes",
             training_frame  =train,
             validation_frame=test)

  gbm_elapsed = time.time() - s

  # Run DRF
  s = time.time()
    
  drf0 = H2ORandomForestEstimator(ntrees=250, max_depth=30)

  drf0.train(x               =bike_names_x,
             y               ="bikes",
             training_frame  =train,
             validation_frame=test)
    
  drf_elapsed = time.time() - s 
    
    
  # Run GLM
  if "WC1" in bike_names_x: bike_names_x.remove("WC1")
  s = time.time()

  glm0 = H2OGeneralizedLinearEstimator(Lambda=[1e-5], family="poisson")
    
  glm0.train(x               =bike_names_x,
             y               ="bikes",
             training_frame  =train,
             validation_frame=test)

  glm_elapsed = time.time() - s
  
  # Run DL
  s = time.time()

  dl0 = H2ODeepLearningEstimator(hidden=[50,50,50,50], epochs=50)
    
  dl0.train(x               =bike_names_x,
            y               ="bikes",
            training_frame  =train,
            validation_frame=test)
    
  dl_elapsed = time.time() - s
  
  # ----------
  # 4- Score on holdout set & report
  train_r2_gbm = gbm0.model_performance(train).r2()
  test_r2_gbm  = gbm0.model_performance(test ).r2()
  hold_r2_gbm  = gbm0.model_performance(hold ).r2()
#   print "GBM R2 TRAIN=",train_r2_gbm,", R2 TEST=",test_r2_gbm,", R2 HOLDOUT=",hold_r2_gbm
  
  train_r2_drf = drf0.model_performance(train).r2()
  test_r2_drf  = drf0.model_performance(test ).r2()
  hold_r2_drf  = drf0.model_performance(hold ).r2()
#   print "DRF R2 TRAIN=",train_r2_drf,", R2 TEST=",test_r2_drf,", R2 HOLDOUT=",hold_r2_drf
  
  train_r2_glm = glm0.model_performance(train).r2()
  test_r2_glm  = glm0.model_performance(test ).r2()
  hold_r2_glm  = glm0.model_performance(hold ).r2()
#   print "GLM R2 TRAIN=",train_r2_glm,", R2 TEST=",test_r2_glm,", R2 HOLDOUT=",hold_r2_glm
    
  train_r2_dl = dl0.model_performance(train).r2()
  test_r2_dl  = dl0.model_performance(test ).r2()
  hold_r2_dl  = dl0.model_performance(hold ).r2()
#   print " DL R2 TRAIN=",train_r2_dl,", R2 TEST=",test_r2_dl,", R2 HOLDOUT=",hold_r2_dl
    
  # make a pretty HTML table printout of the results

  header = ["Model", "R2 TRAIN", "R2 TEST", "R2 HOLDOUT", "Model Training Time (s)"]
  table  = [
            ["GBM", train_r2_gbm, test_r2_gbm, hold_r2_gbm, round(gbm_elapsed,3)],
            ["DRF", train_r2_drf, test_r2_drf, hold_r2_drf, round(drf_elapsed,3)],
            ["GLM", train_r2_glm, test_r2_glm, hold_r2_glm, round(glm_elapsed,3)],
            ["DL ", train_r2_dl,  test_r2_dl,  hold_r2_dl , round(dl_elapsed,3) ],
           ]
  h2o.H2ODisplay(table,header)
  # --------------

In [49]:
# Split the data (into test & train), fit some models and predict on the holdout data
split_fit_predict(bpd)
# Here we see an r^2 of 0.91 for GBM, and 0.71 for GLM.  This means given just
# the station, the month, and the day-of-week we can predict 90% of the
# variance of the bike-trip-starts.


Training data has 5 columns and 83800 rows, test has 41722 rows, holdout has 13739

gbm Model Build Progress: [##################################################] 100%

drf Model Build Progress: [##################################################] 100%

glm Model Build Progress: [##################################################] 100%

deeplearning Model Build Progress: [##################################################] 100%
Model R2 TRAIN R2 TEST R2 HOLDOUT Model Training Time (s)
GBM 1.0 0.9 0.9 19.065
DRF 0.9 0.8 0.8 23.345
GLM 0.8 0.8 0.8 0.36
DL 0.9 0.9 0.9 67.712

In [50]:
# ----------
# 5- Now lets add some weather
# Load weather data
wthr1 = h2o.import_file(path=[mylocate("bigdata/laptop/citibike-nyc/31081_New_York_City__Hourly_2013.csv"),
                               mylocate("bigdata/laptop/citibike-nyc/31081_New_York_City__Hourly_2014.csv")])
# Peek at the data
wthr1.describe()


Parse Progress: [##################################################] 100%

Parsed 17,520 rows and 50 cols:

File1 /Users/ludirehak/h2o-3/bigdata/laptop/citibike-nyc/31081_New_York_City__Hourly_2013.csv
File2 /Users/ludirehak/h2o-3/bigdata/laptop/citibike-nyc/31081_New_York_City__Hourly_2014.csv
Rows: 17,520 Cols: 50

Chunk compression summary:
chunk_type chunk_name count count_percentage size size_percentage
C0L Constant Integers 107 6.294118 8.4 KB 0.7889721
C0D Constant Reals 436 25.647058 34.1 KB 3.2148771
CXI Sparse Integers 17 1.0 1.5 KB 0.1
C1 1-Byte Integers 346 20.352942 197.4 KB 18.634672
C1N 1-Byte Integers (w/o NAs) 214 12.588236 122.3 KB 11.544063
C1S 1-Byte Fractions 214 12.588236 125.3 KB 11.822968
C2S 2-Byte Fractions 196 11.529412 214.5 KB 20.242111
C4S 4-Byte Fractions 170 10.0 356.1 KB 33.612423
Frame distribution summary:
size number_of_rows number_of_chunks_per_column number_of_chunks
172.16.2.37:54321 1.0 MB 17520.0 34.0 1700.0
mean 1.0 MB 17520.0 34.0 1700.0
min 1.0 MB 17520.0 34.0 1700.0
max 1.0 MB 17520.0 34.0 1700.0
stddev 0 B 0.0 0.0 0.0
total 1.0 MB 17520.0 34.0 1700.0
Column-by-Column Summary:

Year Local Month Local Day Local Hour Local Year UTC Month UTC Day UTC Hour UTC Cavok Reported Cloud Ceiling (m) Cloud Cover Fraction Cloud Cover Fraction 1 Cloud Cover Fraction 2 Cloud Cover Fraction 3 Cloud Cover Fraction 4 Cloud Cover Fraction 5 Cloud Cover Fraction 6 Cloud Height (m) 1 Cloud Height (m) 2 Cloud Height (m) 3 Cloud Height (m) 4 Cloud Height (m) 5 Cloud Height (m) 6 Dew Point (C) Humidity Fraction Precipitation One Hour (mm) Pressure Altimeter (mbar) Pressure Sea Level (mbar) Pressure Station (mbar) Snow Depth (cm) Temperature (C) Visibility (km) Weather Code 1 Weather Code 1/ Description Weather Code 2 Weather Code 2/ Description Weather Code 3 Weather Code 3/ Description Weather Code 4 Weather Code 4/ Description Weather Code 5 Weather Code 5/ Description Weather Code 6 Weather Code 6/ Description Weather Code Most Severe / Icon Code Weather Code Most Severe Weather Code Most Severe / Description Wind Direction (degrees) Wind Gust (m/s) Wind Speed (m/s)
type int int int int int int int int int real real real real real int int int real real real int int int real real real real int int int real real int enum int enum int enum int enum int enum int enum int int enum int real real
mins 2013.0 1.0 1.0 0.0 2013.0 1.0 1.0 0.0 0.0 61.0 0.0 0.0 0.25 0.5 NaN NaN NaN 60.96 213.36 365.76 NaN NaN NaN -26.7 0.1251 0.0 983.2949 NaN NaN NaN -15.6 0.001 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 3.0 0.0 0.0 1.0 0.0 10.0 7.2 0.0
maxs 2014.0 12.0 31.0 23.0 2015.0 12.0 31.0 23.0 0.0 3657.6 1.0 1.0 1.0 1.0 NaN NaN NaN 3657.5999 3657.5999 3657.5999 NaN NaN NaN 24.4 1.0 26.924 1042.2113 NaN NaN NaN 36.1 16.0934 60.0 11.0 60.0 10.0 36.0 7.0 27.0 4.0 27.0 2.0 3.0 0.0 16.0 60.0 11.0 360.0 20.58 10.8
mean 2013.5 6.5 15.7 11.5 2013.5 6.5 15.7 11.5 0.0 1306.3 0.4 0.4 0.9 1.0 0.0 0.0 0.0 1294.0 1643.7 2084.9 0.0 0.0 0.0 4.3 0.6 1.4 1017.8 0.0 0.0 0.0 12.6 14.4 4.8 NaN 3.7 NaN 2.8 NaN 2.0 NaN 4.125 NaN 3.0 0.0 1.4 4.8 NaN 194.7 9.4 2.4
sigma 0.5 3.4 8.8 6.9 0.5 3.4 8.8 6.9 0.0 995.3 0.5 0.4 0.2 0.1 -0.0 -0.0 -0.0 962.7 916.7 887.2 -0.0 -0.0 -0.0 11.0 0.2 2.6 7.5 -0.0 -0.0 -0.0 10.0 3.7 5.7 NaN 6.1 NaN 5.8 NaN 3.1 NaN 6.2 NaN 0.0 0.0 4.1 5.7 NaN 106.4 1.8 1.6
zero_count 0 0 0 730 0 0 0 730 17455 0 8758 8758 0 0 -17520 -17520 -17520 0 0 0 -17520 -17520 -17520 268 0 501 0 -17520 -17520 -17520 269 0 0 17 0 30 0 13 -5044 -5024 -11241 -11229 -17030 -17028 14980 0 17 0 0 2768
missing_count 0 0 0 0 0 0 0 0 65 10780 375 375 14682 16535 17520 17520 17520 9103 14683 16535 17520 17520 17520 67 67 15660 360 17520 17520 17520 67 412 14980 14980 16477 16477 17181 17181 17433 17433 17504 17504 17518 17518 0 14980 14980 9382 14381 1283

In [51]:
# Lots of columns in there!  Lets plan on converting to time-since-epoch to do
# a 'join' with the bike data, plus gather weather info that might affect
# cyclists - rain, snow, temperature.  Alas, drop the "snow" column since it's
# all NA's.  Also add in dew point and humidity just in case.  Slice out just
# the columns of interest and drop the rest.
wthr2 = wthr1[["Year Local","Month Local","Day Local","Hour Local","Dew Point (C)","Humidity Fraction","Precipitation One Hour (mm)","Temperature (C)","Weather Code 1/ Description"]]

wthr2.set_name(wthr2.names.index("Precipitation One Hour (mm)"), "Rain (mm)")
wthr2.set_name(wthr2.names.index("Weather Code 1/ Description"), "WC1")
wthr2.describe()
# Much better!


Rows: 17,520 Cols: 9

Chunk compression summary:
chunk_type chunk_name count count_percentage size size_percentage
C0L Constant Integers 46 15.0 3.6 KB 1.780005
C1 1-Byte Integers 34 11.111112 19.4 KB 9.592678
C1N 1-Byte Integers (w/o NAs) 90 29.411766 51.5 KB 25.494701
C1S 1-Byte Fractions 42 13.725491 24.0 KB 11.894592
C2S 2-Byte Fractions 94 30.718956 103.4 KB 51.238026
Frame distribution summary:
size number_of_rows number_of_chunks_per_column number_of_chunks
172.16.2.37:54321 201.9 KB 17520.0 34.0 306.0
mean 201.9 KB 17520.0 34.0 306.0
min 201.9 KB 17520.0 34.0 306.0
max 201.9 KB 17520.0 34.0 306.0
stddev 0 B 0.0 0.0 0.0
total 201.9 KB 17520.0 34.0 306.0
Column-by-Column Summary:

Year Local Month Local Day Local Hour Local Dew Point (C) Humidity Fraction Rain (mm) Temperature (C) WC1
type int int int int real real real real enum
mins 2013.0 1.0 1.0 0.0 -26.7 0.1251 0.0 -15.6 0.0
maxs 2014.0 12.0 31.0 23.0 24.4 1.0 26.924 36.1 11.0
mean 2013.5 6.5 15.7 11.5 4.3 0.6 1.4 12.6 NaN
sigma 0.5 3.4 8.8 6.9 11.0 0.2 2.6 10.0 NaN
zero_count 0 0 0 730 268 0 501 269 17
missing_count 0 0 0 0 67 67 15660 67 14980

In [52]:
# Filter down to the weather at Noon
wthr3 = wthr2[ wthr2["Hour Local"]==12 ]

In [53]:
# Lets now get Days since the epoch... we'll convert year/month/day into Epoch
# time, and then back to Epoch days.  Need zero-based month and days, but have
# 1-based.
wthr3["msec"] = h2o.H2OFrame.mktime(year=wthr3["Year Local"], month=wthr3["Month Local"]-1, day=wthr3["Day Local"]-1, hour=wthr3["Hour Local"])
secsPerDay=1000*60*60*24
wthr3["Days"] = (wthr3["msec"]/secsPerDay).floor()
wthr3.describe()
# msec looks sane (numbers like 1.3e12 are in the correct range for msec since
# 1970).  Epoch Days matches closely with the epoch day numbers from the
# CitiBike dataset.


Rows: 730 Cols: 11

Chunk compression summary:
chunk_type chunk_name count count_percentage size size_percentage
C0L Constant Integers 80 21.390373 6.3 KB 12.498779
C0D Constant Reals 13 3.4759357 1.0 KB 2.0310516
C1 1-Byte Integers 30 8.021391 2.6 KB 5.2455816
C1N 1-Byte Integers (w/o NAs) 56 14.973262 4.9 KB 9.801778
C1S 1-Byte Fractions 34 9.090909 3.5 KB 7.0032225
C2S 2-Byte Fractions 34 9.090909 4.2 KB 8.4288645
CUD Unique Reals 25 6.6844916 3.6 KB 7.2297626
C8D 64-bit Reals 102 27.272728 23.9 KB 47.76096
Frame distribution summary:
size number_of_rows number_of_chunks_per_column number_of_chunks
172.16.2.37:54321 50.0 KB 730.0 34.0 374.0
mean 50.0 KB 730.0 34.0 374.0
min 50.0 KB 730.0 34.0 374.0
max 50.0 KB 730.0 34.0 374.0
stddev 0 B 0.0 0.0 0.0
total 50.0 KB 730.0 34.0 374.0
Column-by-Column Summary:

Year Local Month Local Day Local Hour Local Dew Point (C) Humidity Fraction Rain (mm) Temperature (C) WC1 msec Days
type int int int int real real real real enum int int
mins 2013.0 1.0 1.0 12.0 -26.7 0.1723 0.0 -13.9 0.0 1357070400000.0 15706.0
maxs 2014.0 12.0 31.0 12.0 23.3 1.0 12.446 34.4 10.0 1420056000000.0 16435.0
mean 2013.5 6.5 15.7 12.0 4.2 0.5 1.5 14.1 NaN 1388560852600.0 16070.5
sigma 0.5 3.5 8.8 0.0 11.1 0.2 2.4 10.4 NaN 18219740080.4 210.9
zero_count 0 0 0 0 14 0 -174 7 -83 0 0
missing_count 0 0 0 0 3 3 660 3 620 0 0

In [54]:
# Lets drop off the extra time columns to make a easy-to-handle dataset.
wthr4 = wthr3.drop("Year Local").drop("Month Local").drop("Day Local").drop("Hour Local").drop("msec")

In [55]:
# Also, most rain numbers are missing - lets assume those are zero rain days
rain = wthr4["Rain (mm)"]
rain[ rain.isna() ] = 0
wthr4["Rain (mm)"] = rain

In [56]:
# ----------
# 6 - Join the weather data-per-day to the bike-starts-per-day
print "Merge Daily Weather with Bikes-Per-Day"
bpd_with_weather = bpd.merge(wthr4,allLeft=True,allRite=False)
bpd_with_weather.describe()
bpd_with_weather.show()


Merge Daily Weather with Bikes-Per-Day
Rows: 139,261 Cols: 10

Chunk compression summary:
chunk_type chunk_name count count_percentage size size_percentage
C1 1-Byte Integers 32 10.0 138.1 KB 4.3211317
C1N 1-Byte Integers (w/o NAs) 64 20.0 276.2 KB 8.642263
C2 2-Byte Integers 96 30.000002 822.4 KB 25.72735
CUD Unique Reals 96 30.000002 869.6 KB 27.205559
C8D 64-bit Reals 32 10.0 1.1 MB 34.10369
Frame distribution summary:
size number_of_rows number_of_chunks_per_column number_of_chunks
172.16.2.37:54321 3.1 MB 139261.0 32.0 320.0
mean 3.1 MB 139261.0 32.0 320.0
min 3.1 MB 139261.0 32.0 320.0
max 3.1 MB 139261.0 32.0 320.0
stddev 0 B 0.0 0.0 0.0
total 3.1 MB 139261.0 32.0 320.0
Column-by-Column Summary:

Days start station name bikes Month DayOfWeek Humidity Fraction Rain (mm) Temperature (C) WC1 Dew Point (C)
type int enum int enum enum real real real enum real
mins 15887.0 0.0 1.0 0.0 0.0 0.1723 0.0 -13.9 0.0 -26.7
maxs 16314.0 339.0 680.0 11.0 6.0 1.0 8.382 34.4 10.0 23.3
mean 16100.0 NaN 74.7 NaN NaN 0.5 0.1 15.6 NaN 5.5
sigma 123.6 NaN 64.1 NaN NaN 0.2 0.6 10.9 NaN 11.7
zero_count 0 428 0 9949 19880 0 131155 1598 324 1954
missing_count 0 0 0 0 0 981 0 981 119130 981
H2OFrame with 139261 rows and 10 columns: 
Days start station name bikes Month DayOfWeek Humidity Fraction Rain (mm) Temperature (C) WC1 Dew Point (C)
0 16313 Greenwich St & N Moore St 74 8 Sat 0.6287 0.000 28.9 NaN 21.1
1 15993 Henry St & Atlantic Ave 56 10 Mon 0.6082 0.000 18.3 NaN 10.6
2 16057 Harrison St & Hudson St 13 12 Tue 0.5596 0.000 1.1 NaN -6.7
3 16249 Greenwich St & Warren St 197 6 Fri 0.3848 0.000 28.3 NaN 12.8
4 16121 Hanover Pl & Livingston St 2 2 Wed 0.4331 0.000 7.8 NaN -3.9
5 16185 Hancock St & Bedford Ave 14 4 Thu 0.2092 0.000 15.0 NaN -7.2
6 15966 Perry St & Bleecker St 101 9 Tue 0.3836 0.000 18.9 NaN 4.4
7 16222 Park Pl & Church St 53 5 Sat 0.2586 0.000 22.2 NaN 1.7
8 16158 Pearl St & Anchorage Pl 15 3 Fri 0.8309 0.254 8.3 light rain 5.6
9 16286 Park Ave & St Edwards St 5 8 Sun 0.5444 0.000 27.2 NaN 17.2

In [57]:
# 7 - Test/Train split again, model build again, this time with weather
split_fit_predict(bpd_with_weather)


Training data has 10 columns and 83867 rows, test has 41559 rows, holdout has 13835

gbm Model Build Progress: [##################################################] 100%

drf Model Build Progress: [##################################################] 100%

glm Model Build Progress: [##################################################] 100%

deeplearning Model Build Progress: [##################################################] 100%
Model R2 TRAIN R2 TEST R2 HOLDOUT Model Training Time (s)
GBM 1.0 0.9 0.9 25.557
DRF 0.9 0.9 0.8 136.197
GLM 0.8 0.8 0.8 0.367
DL 0.9 0.9 0.9 74.342

In [ ]: