In [1]:
# import matplotlib as mpl
import matplotlib.pyplot as plt
from scipy.interpolate import griddata
from scipy.interpolate import interp2d
import sys
import argparse
import os
import numpy as np
from numpy.random import uniform
import pandas as pd
from itertools import product
import glob

import plotly.plotly as py
import plotly.graph_objs as go

import pandas as pd
%matplotlib inline
# %matplotlib notebook
# matplotlib.rcParams['figure.figsize'] = (10, 8)

In [15]:
%run ~/Research/opt_server/opt/small_script/myFunctions_helper.py

In [16]:
a = read_lammps("/Users/weilu/Research/server/jan_2018/rg_0.3_lipid_0.6_mem_1/simulation/dis_30.0/0/dump.lammpstrj.0")

In [30]:
z_list = []
for atoms in a:
    b = np.array(atoms)
    z_list.append(b.mean(axis=0)[2])

In [31]:
plt.plot(z_list)


Out[31]:
[<matplotlib.lines.Line2D at 0x11d605f28>]

In [3]:
a = [1,2,3]

In [6]:
test = data[:10]

In [10]:
test.groupby("BiasTo").count()


Out[10]:
Step Run Temp Qw Energy Distance Lipid Lipid1 Lipid2 Lipid3 ... Membrane Rg rg1 rg2 rg3 rg4 rg5 rg6 rg_all TotalE
BiasTo
86.0 10 10 10 10 10 10 10 10 10 10 ... 10 10 10 10 10 10 10 10 10 10

1 rows × 33 columns


In [15]:
sample_range_mode = 0
if sample_range_mode == 0:
    queryCmd = 'Step > 1e7 & Step <= 2e7'
elif sample_range_mode == 1:
    queryCmd ='Step > 2e7 & Step <= 3e7'
elif sample_range_mode == 2:
    queryCmd ='Step > 3e7 & Step <= 4e7'
tmp = data.query(queryCmd)

In [32]:
1e7/4000


Out[32]:
2500.0

In [23]:
dic = {"T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000}
temps = list(dic.values())

In [35]:
kmem=0.2
klipid=0.1
kgo=0.1
krg=0.2

In [26]:
dic["T0"]


Out[26]:
350

In [38]:
tmp


Out[38]:
Step Run Temp Qw Energy Distance Lipid Lipid1 Lipid2 Lipid3 ... Rg rg1 rg2 rg3 rg4 rg5 rg6 rg_all TotalE BiasTo
2070002 10004000 2 T0 0.280807 -828.622679 95.097724 0.003179 -0.001896 -3.067246e-06 -1.435432e-06 ... 1.981866 0.104958 1.865722 0.000046 3.270879e-04 1.749809e-08 0.010813 1.981866 554.538343 100.0
2070015 10008000 2 T0 0.241949 -820.946682 92.085859 -0.011685 -0.001011 -2.385941e-06 -1.762214e-06 ... 2.574357 0.023037 2.520015 0.000077 3.140997e-04 4.552749e-09 0.030914 2.574357 -552.578301 100.0
2070032 10012000 2 T0 0.289616 -831.120574 89.382463 0.004196 -0.000700 -1.591165e-06 -4.327326e-07 ... 1.957082 0.007564 1.935920 0.000061 4.743287e-05 2.229813e-09 0.013490 1.957082 52.663447 100.0
2070042 10016000 2 T0 0.276164 -837.638974 87.175370 0.008105 -0.001097 -3.016379e-06 -1.070475e-06 ... 2.171908 0.022962 2.117458 0.000332 3.243857e-04 2.518908e-09 0.030831 2.171908 -424.005007 100.0
2070059 10020000 2 T0 0.258317 -852.392087 89.419660 0.007872 -0.001066 -2.376344e-06 -1.702527e-06 ... 2.129087 0.015999 2.046813 0.000075 8.437714e-04 7.656298e-09 0.065356 2.129087 -366.512967 100.0
2070069 10024000 2 T0 0.281347 -878.901771 95.729079 -0.000063 -0.004663 -8.941823e-06 -7.301624e-06 ... 2.281742 0.518019 1.734976 0.000014 8.384061e-04 4.940997e-09 0.027895 2.281742 -732.919582 100.0
2070081 10028000 2 T0 0.273693 -864.299036 98.143204 0.002353 -0.004805 -1.061845e-05 -2.880777e-06 ... 2.144361 0.357426 1.781956 0.000069 4.740358e-05 1.015580e-09 0.004862 2.144361 -675.965081 100.0
2070091 10032000 2 T0 0.294670 -837.192851 97.913422 0.007904 -0.001340 -2.378652e-06 -1.090359e-06 ... 2.005027 0.045678 1.926878 0.000080 1.287484e-04 4.917504e-09 0.032261 2.005027 -479.514042 100.0
2070103 10036000 2 T0 0.258293 -848.607101 97.378846 0.005409 -0.000244 -5.352996e-07 -3.362953e-07 ... 1.646520 0.000927 1.619524 0.000038 7.299746e-04 3.507701e-09 0.025300 1.646520 404.626220 100.0
2070111 10040000 2 T0 0.264011 -900.804873 103.861470 -0.003759 -0.000157 -2.676408e-07 -1.399249e-07 ... 2.017078 0.000405 2.002695 0.000013 1.728702e-04 2.501549e-09 0.013793 2.017078 308.193517 100.0
2070123 10044000 2 T0 0.264111 -886.116573 96.940264 -0.005574 -0.000086 -2.205624e-07 -8.121570e-08 ... 3.413019 0.000145 3.389989 0.000023 4.716771e-05 1.180023e-08 0.022815 3.413019 -474.217432 100.0
2070132 10048000 2 T0 0.290987 -858.877067 92.947561 0.001894 -0.000223 -9.220904e-07 -1.958215e-07 ... 4.122275 0.000664 4.114014 0.000116 6.129720e-05 1.021856e-07 0.007420 4.122275 791.623088 100.0
2070147 10052000 2 T0 0.293219 -863.213910 96.273530 -0.016755 -0.002087 -1.714140e-05 -3.355435e-06 ... 1.815108 0.161641 1.639265 0.003677 1.817888e-04 1.233003e-08 0.010344 1.815108 -535.681713 100.0
2070166 10056000 2 T0 0.271556 -877.336597 92.680086 0.002307 -0.004366 -5.432570e-05 -1.138370e-05 ... 2.179433 0.357180 1.785654 0.000453 2.005247e-04 8.342630e-09 0.035945 2.179433 -631.623131 100.0
2070175 10060000 2 T0 0.262588 -878.790018 90.197453 0.004480 -0.001059 -7.971715e-06 -1.575284e-06 ... 1.576918 0.024415 1.521309 0.010208 3.382776e-05 2.194339e-09 0.020952 1.576918 -150.525400 100.0
2070180 10064000 2 T0 0.239759 -847.448013 88.827176 0.007499 -0.001123 -1.177193e-05 -2.001472e-06 ... 1.438423 0.013544 1.411050 0.000990 2.079835e-05 9.161279e-10 0.012818 1.438423 -495.360040 100.0
2070192 10068000 2 T0 0.292196 -877.744795 94.121497 0.013557 -0.006325 -8.874360e-05 -5.322351e-06 ... 2.934803 0.771969 2.154811 0.001171 7.815609e-06 6.950938e-10 0.006845 2.934803 795.105805 100.0
2070208 10072000 2 T0 0.281996 -879.912079 97.205169 0.020104 -0.003825 -6.629481e-05 -7.159126e-06 ... 1.919562 0.197471 1.664812 0.001590 6.777855e-05 2.438290e-09 0.055622 1.919562 -636.864504 100.0
2070223 10076000 2 T0 0.271448 -861.512180 93.009423 0.022200 -0.004437 -1.075250e-04 -7.268466e-06 ... 2.298581 0.456399 1.823485 0.005945 5.190151e-05 3.743315e-09 0.012700 2.298581 127.574675 100.0
2070238 10080000 2 T0 0.259054 -902.405855 95.990514 0.025826 -0.006872 -2.177325e-04 -6.254952e-06 ... 2.557898 0.995189 1.551846 0.005709 2.343173e-06 3.497833e-10 0.005152 2.557898 889.246832 100.0
2070243 10084000 2 T0 0.276094 -866.044029 99.468832 -0.010461 -0.001325 -2.765415e-05 -2.129147e-06 ... 1.926163 0.019755 1.872060 0.024015 2.416031e-05 5.626796e-10 0.010308 1.926163 844.275088 100.0
2070255 10088000 2 T0 0.262880 -911.936946 92.201221 -0.008224 -0.000580 -8.560489e-06 -1.329102e-06 ... 2.783579 0.010422 2.750547 0.001479 9.798287e-05 2.424943e-09 0.021033 2.783579 688.136707 100.0
2070269 10092000 2 T0 0.259813 -901.536159 97.033548 -0.044976 -0.000764 -6.573100e-06 -1.835527e-06 ... 2.024969 0.012253 1.907766 0.000704 2.862056e-04 6.090422e-09 0.103959 2.024969 -232.378513 100.0
2070285 10096000 2 T0 0.245021 -884.704954 96.456969 -0.003517 -0.003910 -2.377674e-05 -4.456544e-06 ... 1.828535 0.261010 1.526172 0.000647 8.068158e-05 7.893664e-10 0.040625 1.828535 -445.331655 100.0
2070292 10100000 2 T0 0.250206 -869.640611 95.488503 -0.003925 -0.003904 -4.481806e-05 -6.370413e-06 ... 1.846899 0.336874 1.489072 0.000502 8.900035e-05 6.811789e-10 0.020362 1.846899 -485.750791 100.0
2070302 10104000 2 T0 0.301462 -867.000739 90.429262 0.011889 -0.002800 -3.005960e-05 -2.110053e-06 ... 1.929319 0.183257 1.741436 0.000619 3.324118e-06 1.130038e-09 0.004003 1.929319 -515.898799 100.0
2070313 10108000 2 T0 0.290849 -875.918327 91.609422 0.013670 -0.002199 -2.390557e-05 -1.424606e-06 ... 2.334396 0.059588 2.269884 0.000910 3.110603e-06 2.702390e-10 0.004011 2.334396 -457.616137 100.0
2070333 10112000 2 T0 0.258240 -875.699976 87.696438 0.007281 -0.001060 -1.077303e-05 -3.052834e-07 ... 2.863450 0.059660 2.802642 0.000685 3.287320e-07 7.915593e-11 0.000462 2.863450 -321.124522 100.0
2070340 10116000 2 T0 0.285545 -871.004910 86.680978 0.006082 -0.001051 -1.033314e-05 -4.177733e-07 ... 1.745222 0.062518 1.679689 0.001111 1.548031e-06 1.964475e-10 0.001902 1.745222 -183.856138 100.0
2070351 10120000 2 T0 0.291006 -878.718858 83.834321 0.010739 -0.001044 -1.967059e-05 -5.553298e-07 ... 1.808741 0.038449 1.766443 0.002379 1.196788e-06 1.335475e-09 0.001469 1.808741 544.641155 100.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2099645 19884000 8 T0 0.493733 -840.145177 77.972546 -32.391206 -6.209497 -6.453194e+00 -5.188259e+00 ... 20.120077 1.951250 2.210894 5.356078 2.773537e+00 6.727858e+00 1.100460 20.120077 -394.990439 100.0
2099663 19888000 8 T0 0.499535 -850.557726 78.522437 -32.648184 -6.300870 -6.174191e+00 -4.889108e+00 ... 18.549101 2.051146 2.896537 4.673224 2.576634e+00 4.524068e+00 1.827491 18.549101 372.698044 100.0
2099674 19892000 8 T0 0.512807 -889.577826 74.981854 -36.066003 -6.392304 -6.618728e+00 -6.043972e+00 ... 15.875614 2.414944 2.517651 3.106878 2.494587e+00 4.957015e+00 0.384539 15.875614 -261.279584 100.0
2099677 19896000 8 T0 0.476477 -868.196462 75.968588 -35.475478 -6.359002 -6.566814e+00 -5.889066e+00 ... 17.055413 2.696824 2.611954 4.747232 3.355762e+00 2.505325e+00 1.138316 17.055413 -746.982036 100.0
2099695 19900000 8 T0 0.502225 -869.666123 77.145646 -37.252282 -6.496575 -6.699559e+00 -6.446152e+00 ... 18.042052 2.616107 2.847122 3.253868 4.085161e+00 4.357169e+00 0.882626 18.042052 324.180629 100.0
2099710 19904000 8 T0 0.511225 -872.001744 82.200456 -36.248281 -6.590469 -6.704704e+00 -5.961311e+00 ... 20.966251 3.617200 3.385510 3.311736 3.357697e+00 6.917061e+00 0.377047 20.966251 -209.495495 100.0
2099714 19908000 8 T0 0.453688 -876.003477 82.767822 -35.594104 -6.352181 -6.777351e+00 -6.368178e+00 ... 20.930922 2.667743 2.575009 4.569341 3.421847e+00 7.049654e+00 0.647327 20.930922 377.785951 100.0
2099728 19912000 8 T0 0.433540 -874.746450 82.975404 -34.012639 -6.360902 -6.762533e+00 -6.031092e+00 ... 21.142772 2.323650 2.564629 5.802921 2.833055e+00 6.931655e+00 0.686862 21.142772 -404.061570 100.0
2099740 19916000 8 T0 0.526598 -869.327926 86.172089 -34.873991 -6.497850 -6.727193e+00 -5.709796e+00 ... 19.539845 2.682492 2.722247 3.771435 3.055182e+00 6.957779e+00 0.350710 19.539845 -691.447414 100.0
2099749 19920000 8 T0 0.459776 -884.228430 82.169214 -33.604978 -6.243667 -6.219674e+00 -5.897562e+00 ... 21.838377 2.561170 2.035580 5.313524 3.669269e+00 7.144590e+00 1.114245 21.838377 -188.623940 100.0
2099768 19924000 8 T0 0.464411 -894.341116 92.381404 -30.640625 -6.442256 -6.649246e+00 -6.103107e+00 ... 18.759506 2.036794 2.559969 4.031529 3.194078e+00 5.923836e+00 1.013300 18.759506 642.978652 100.0
2099775 19928000 8 T0 0.471931 -885.536801 85.177827 -34.915456 -6.579116 -6.447453e+00 -6.017759e+00 ... 19.734363 2.185693 3.534193 3.195531 2.627470e+00 7.694927e+00 0.496549 19.734363 -800.097213 100.0
2099794 19932000 8 T0 0.472912 -880.666379 79.895679 -36.235033 -6.544249 -6.556416e+00 -6.247883e+00 ... 20.916295 2.916143 3.988074 2.709294 2.562745e+00 8.316275e+00 0.423765 20.916295 704.217832 100.0
2099807 19936000 8 T0 0.493521 -880.409241 85.267843 -35.774917 -6.681657 -6.584239e+00 -6.474097e+00 ... 19.236245 2.613168 3.172977 3.081802 3.164086e+00 6.817321e+00 0.386891 19.236245 -776.839854 100.0
2099808 19940000 8 T0 0.483673 -857.969340 86.043069 -34.824037 -6.573686 -6.742357e+00 -6.261230e+00 ... 19.164391 1.923197 2.687648 5.877303 3.134491e+00 5.296629e+00 0.245123 19.164391 -580.329351 100.0
2099820 19944000 8 T0 0.462832 -848.794472 81.815720 -30.919110 -5.597276 -6.703994e+00 -5.311070e+00 ... 20.422617 3.330503 3.426241 5.038363 3.411734e+00 3.895512e+00 1.320264 20.422617 639.473322 100.0
2099835 19948000 8 T0 0.495643 -890.952343 85.019228 -34.320932 -6.351182 -6.560239e+00 -5.940184e+00 ... 22.106476 4.022731 4.934589 4.203771 2.845226e+00 5.029630e+00 1.070529 22.106476 128.411991 100.0
2099845 19952000 8 T0 0.411812 -877.947793 83.683877 -35.383936 -6.643442 -6.330538e+00 -6.012909e+00 ... 18.344306 2.074641 2.603992 4.716045 1.882760e+00 6.899286e+00 0.167582 18.344306 -247.654068 100.0
2099860 19956000 8 T0 0.455941 -908.998871 83.250497 -35.851724 -6.398609 -6.745150e+00 -6.177691e+00 ... 19.956763 2.796244 2.816884 4.219127 3.061596e+00 6.956067e+00 0.106846 19.956763 -394.764243 100.0
2099870 19960000 8 T0 0.480634 -913.597760 83.013429 -34.822348 -6.508236 -6.792977e+00 -5.217025e+00 ... 16.253403 2.821590 3.131983 3.650484 1.607692e+00 4.455656e+00 0.586000 16.253403 -17.216355 100.0
2099888 19964000 8 T0 0.507242 -856.471211 78.141391 -34.832714 -6.191146 -6.690520e+00 -6.066706e+00 ... 20.808589 2.777366 3.478428 3.996921 4.611904e+00 4.445497e+00 1.498472 20.808589 831.551904 100.0
2099903 19968000 8 T0 0.491769 -866.770025 83.226907 -35.856807 -6.654743 -6.747407e+00 -5.951801e+00 ... 17.817249 2.932921 2.744831 5.303420 2.794481e+00 3.553738e+00 0.487858 17.817249 -278.036670 100.0
2099915 19972000 8 T0 0.514925 -881.057413 83.544177 -35.116725 -6.506887 -6.759018e+00 -5.741396e+00 ... 16.271492 1.955619 2.496343 4.766670 1.794602e+00 5.009418e+00 0.248840 16.271492 586.408006 100.0
2099926 19976000 8 T0 0.493392 -850.141659 85.452404 -35.722673 -6.623993 -6.748264e+00 -5.845469e+00 ... 22.623228 2.135059 2.808922 7.019010 3.161104e+00 7.343003e+00 0.156130 22.623228 180.901492 100.0
2099928 19980000 8 T0 0.495763 -877.107836 83.638759 -34.797747 -6.095662 -6.789101e+00 -5.939979e+00 ... 21.864400 3.495074 3.799116 3.293059 3.479124e+00 6.903651e+00 0.894377 21.864400 48.022036 100.0
2099944 19984000 8 T0 0.506119 -862.072944 78.126921 -36.124444 -6.388848 -6.246102e+00 -6.193871e+00 ... 21.316008 2.424837 2.919300 4.267591 2.879038e+00 4.132687e+00 4.692556 21.316008 -258.846308 100.0
2099955 19988000 8 T0 0.471132 -867.426096 77.018662 -35.113728 -6.566716 -6.764698e+00 -6.276538e+00 ... 17.866619 2.086701 3.127018 4.099038 3.211593e+00 4.939604e+00 0.402665 17.866619 323.207156 100.0
2099969 19992000 8 T0 0.493627 -882.782067 77.453376 -34.533395 -6.589149 -6.604162e+00 -5.638113e+00 ... 19.664825 2.056924 2.362149 5.407240 3.045252e+00 6.116003e+00 0.677258 19.664825 -753.586280 100.0
2099976 19996000 8 T0 0.505000 -886.738154 82.643082 -34.863395 -6.579165 -6.731557e+00 -6.118143e+00 ... 20.222102 2.202675 3.087746 5.551332 2.505472e+00 6.266244e+00 0.608633 20.222102 426.638768 100.0
2099997 20000000 8 T0 0.505523 -888.656621 83.113718 -36.878527 -6.500675 -6.706681e+00 -6.161482e+00 ... 17.434982 2.709047 2.149396 4.697833 3.332094e+00 4.291742e+00 0.254869 17.434982 -66.000591 100.0

2500 rows × 34 columns


In [37]:
biasName = "dis"
temp = "100"
for bias, oneBias in data.groupby("BiasTo"):
    for tempSymbol, oneTempAndBias in oneBias.groupby("Temp"):
        temp = dic[tempSymbol]
        if float(temp) > 800:
            continue
        print(f"t_{temp}_{biasName}_{bias}.dat")
        if sample_range_mode == 0:
            queryCmd = 'Step > 1e7 & Step <= 2e7'
        elif sample_range_mode == 1:
            queryCmd ='Step > 2e7 & Step <= 3e7'
        elif sample_range_mode == 2:
            queryCmd ='Step > 3e7 & Step <= 4e7'
        tmp = oneTempAndBias.query(queryCmd)
        chosen_list = ["TotalE", "Qw", "Distance"]
        chosen = tmp[chosen_list]
        chosen = chosen.assign(TotalE_perturb_mem_p=tmp.TotalE + kmem*tmp.Membrane
                                ,TotalE_perturb_mem_m=tmp.TotalE - kmem*tmp.Membrane
                                ,TotalE_perturb_lipid_p=tmp.TotalE + klipid*tmp.Lipid
                                ,TotalE_perturb_lipid_m=tmp.TotalE - klipid*tmp.Lipid
                                ,TotalE_perturb_go_p=tmp.TotalE + kgo*tmp["AMH-Go"]
                                ,TotalE_perturb_go_m=tmp.TotalE - kgo*tmp["AMH-Go"]
                                ,TotalE_perturb_rg_p=tmp.TotalE + krg*tmp.Rg
                                ,TotalE_perturb_rg_m=tmp.TotalE - krg*tmp.Rg)
#         print(tmp.count())
#         tmp.to_csv(freeEnergy_folder+folder+sub_mode_name+f"/data/t_{temp}_{biasName}_{bias}.dat", sep=' ', index=False, header=False)
# chosen
tmp


t_350_dis_100.0.dat
Out[37]:
TotalE Qw Distance TotalE_perturb_go_m TotalE_perturb_go_p TotalE_perturb_lipid_m TotalE_perturb_lipid_p TotalE_perturb_mem_m TotalE_perturb_mem_p TotalE_perturb_rg_m TotalE_perturb_rg_p
2070002 554.538343 0.280807 95.097724 607.423929 501.652757 554.538025 554.538661 557.792207 551.284479 554.141969 554.934716
2070015 -552.578301 0.241949 92.085859 -500.783980 -604.372622 -552.577133 -552.579470 -549.163901 -555.992701 -553.093173 -552.063430
2070032 52.663447 0.289616 89.382463 106.515729 -1.188836 52.663027 52.663866 56.145764 49.181129 52.272030 53.054863
2070042 -424.005007 0.276164 87.175370 -370.086682 -477.923333 -424.005818 -424.004197 -420.594615 -427.415400 -424.439389 -423.570626
2070059 -366.512967 0.258317 89.419660 -313.246353 -419.779582 -366.513755 -366.512180 -363.356003 -369.669932 -366.938785 -366.087150
2070069 -732.919582 0.281347 95.729079 -677.959792 -787.879372 -732.919575 -732.919588 -729.777581 -736.061583 -733.375930 -732.463233
2070081 -675.965081 0.273693 98.143204 -622.780579 -729.149583 -675.965316 -675.964846 -672.692711 -679.237451 -676.393953 -675.536209
2070091 -479.514042 0.294670 97.913422 -425.860191 -533.167892 -479.514832 -479.513251 -476.327305 -482.700778 -479.915047 -479.113036
2070103 404.626220 0.258293 97.378846 457.887295 351.365146 404.625680 404.626761 407.694656 401.557785 404.296916 404.955524
2070111 308.193517 0.264011 103.861470 361.467047 254.919987 308.193893 308.193141 311.313665 305.073370 307.790101 308.596933
2070123 -474.217432 0.264111 96.940264 -421.110074 -527.324790 -474.216874 -474.217989 -471.064056 -477.370808 -474.900035 -473.534828
2070132 791.623088 0.290987 92.947561 845.433616 737.812560 791.622898 791.623277 795.116909 788.129267 790.798633 792.447543
2070147 -535.681713 0.293219 96.273530 -481.341260 -590.022166 -535.680038 -535.683389 -532.441352 -538.922074 -536.044735 -535.318691
2070166 -631.623131 0.271556 92.680086 -578.359577 -684.886686 -631.623362 -631.622901 -628.328140 -634.918122 -632.059018 -631.187245
2070175 -150.525400 0.262588 90.197453 -97.153795 -203.897005 -150.525848 -150.524952 -147.146230 -153.904569 -150.840783 -150.210016
2070180 -495.360040 0.239759 88.827176 -443.030904 -547.689176 -495.360790 -495.359290 -491.759564 -498.960516 -495.647725 -495.072355
2070192 795.105805 0.292196 94.121497 848.695896 741.515714 795.104449 795.107161 798.726492 791.485118 794.518844 795.692766
2070208 -636.864504 0.281996 97.205169 -582.337379 -691.391629 -636.866515 -636.862494 -633.152662 -640.576346 -637.248417 -636.480592
2070223 127.574675 0.271448 93.009423 180.098638 75.050712 127.572455 127.576895 131.401389 123.747961 127.114959 128.034391
2070238 889.246832 0.259054 95.990514 943.742680 834.750984 889.244249 889.249414 892.552344 885.941319 888.735252 889.758411
2070243 844.275088 0.276094 99.468832 898.419951 790.130224 844.276134 844.274042 847.630931 840.919244 843.889855 844.660320
2070255 688.136707 0.262880 92.201221 742.002866 634.270547 688.137529 688.135884 691.604461 684.668952 687.579991 688.693422
2070269 -232.378513 0.259813 97.033548 -179.455924 -285.301102 -232.374016 -232.383011 -229.048158 -235.708869 -232.783507 -231.973520
2070285 -445.331655 0.245021 96.456969 -392.542424 -498.120886 -445.331303 -445.332007 -441.493858 -449.169452 -445.697362 -444.965948
2070292 -485.750791 0.250206 95.488503 -433.131842 -538.369740 -485.750399 -485.751183 -482.145671 -489.355911 -486.120171 -485.381411
2070302 -515.898799 0.301462 90.429262 -462.006785 -569.790812 -515.899988 -515.897610 -512.193564 -519.604033 -516.284663 -515.512935
2070313 -457.616137 0.290849 91.609422 -403.239967 -511.992307 -457.617504 -457.614770 -453.434190 -461.798084 -458.083016 -457.149258
2070333 -321.124522 0.258240 87.696438 -267.885975 -374.363068 -321.125250 -321.123794 -318.457309 -323.791734 -321.697212 -320.551832
2070340 -183.856138 0.285545 86.680978 -130.261125 -237.451150 -183.856746 -183.855529 -180.460442 -187.251834 -184.205182 -183.507093
2070351 544.641155 0.291006 83.834321 598.800183 490.482127 544.640081 544.642229 548.057523 541.224786 544.279406 545.002903
... ... ... ... ... ... ... ... ... ... ... ...
2099645 -394.990439 0.493733 77.972546 -339.871413 -450.109465 -391.751318 -398.229559 -387.258354 -402.722523 -399.014454 -390.966423
2099663 372.698044 0.499535 78.522437 427.650515 317.745572 375.962862 369.433225 380.100916 365.295171 368.988224 376.407864
2099674 -261.279584 0.512807 74.981854 -204.978342 -317.580826 -257.672984 -264.886184 -253.652291 -268.906877 -264.454707 -258.104461
2099677 -746.982036 0.476477 75.968588 -691.760313 -802.203759 -743.434488 -750.529584 -739.324902 -754.639170 -750.393119 -743.570954
2099695 324.180629 0.502225 77.145646 380.478928 267.882329 327.905857 320.455401 331.567995 316.793262 320.572218 327.789039
2099710 -209.495495 0.511225 82.200456 -152.683878 -266.307113 -205.870667 -213.120323 -201.924323 -217.066668 -213.688745 -205.302245
2099714 377.785951 0.453688 82.767822 434.718531 320.853372 381.345361 374.226541 385.640173 369.931729 373.599767 381.972135
2099728 -404.061570 0.433540 82.975404 -348.621860 -459.501281 -400.660307 -407.462834 -396.023333 -412.099808 -408.290125 -399.833016
2099740 -691.447414 0.526598 86.172089 -634.989134 -747.905694 -687.960015 -694.934813 -683.533082 -699.361746 -695.355383 -687.539445
2099749 -188.623940 0.459776 82.169214 -133.151321 -244.096560 -185.263443 -191.984438 -181.237923 -196.009958 -192.991616 -184.256265
2099768 642.978652 0.464411 92.381404 699.312242 586.645061 646.042714 639.914589 650.331669 635.625635 639.226750 646.730553
2099775 -800.097213 0.471931 85.177827 -744.971572 -855.222854 -796.605667 -803.588759 -792.615228 -807.579198 -804.044086 -796.150340
2099794 704.217832 0.472912 79.895679 759.160266 649.275399 707.841336 700.594329 712.017617 696.418048 700.034573 708.401091
2099807 -776.839854 0.493521 85.267843 -721.267740 -832.411968 -773.262362 -780.417346 -769.776252 -783.903456 -780.687103 -772.992605
2099808 -580.329351 0.483673 86.043069 -524.096056 -636.562645 -576.846947 -583.811754 -572.839107 -587.819594 -584.162229 -576.496472
2099820 639.473322 0.462832 81.815720 695.594803 583.351840 642.565233 636.381411 646.900009 632.046634 635.388798 643.557845
2099835 128.411991 0.495643 85.019228 183.924220 72.899762 131.844084 124.979898 136.443260 120.380722 123.990696 132.833286
2099845 -247.654068 0.411812 83.683877 -193.650258 -301.657878 -244.115674 -251.192462 -239.528383 -255.779753 -251.322929 -243.985207
2099860 -394.764243 0.455941 83.250497 -340.015015 -449.513471 -391.179071 -398.349415 -387.176101 -402.352385 -398.755596 -390.772890
2099870 -17.216355 0.480634 83.013429 38.392316 -72.825026 -13.734120 -20.698590 -9.651077 -24.781633 -20.467035 -13.965674
2099888 831.551904 0.507242 78.141391 887.377836 775.725973 835.035176 828.068633 839.279846 823.823963 827.390187 835.713622
2099903 -278.036670 0.491769 83.226907 -221.845947 -334.227392 -274.450989 -281.622350 -270.859793 -285.213546 -281.600119 -274.473220
2099915 586.408006 0.514925 83.544177 642.833670 529.982342 589.919678 582.896333 593.626795 579.189217 583.153707 589.662304
2099926 180.901492 0.493392 85.452404 236.727554 125.075429 184.473759 177.329224 188.175377 173.627607 176.376846 185.426137
2099928 48.022036 0.495763 83.638759 105.190614 -9.146543 51.501810 44.542261 55.286089 40.757982 43.649156 52.394916
2099944 -258.846308 0.506119 78.126921 -202.578375 -315.114241 -255.233863 -262.458752 -251.481527 -266.211088 -263.109509 -254.583106
2099955 323.207156 0.471132 77.018662 379.765313 266.649000 326.718529 319.695783 330.915138 315.499174 319.633832 326.780480
2099969 -753.586280 0.493627 77.453376 -697.456735 -809.715825 -750.132940 -757.039619 -746.030380 -761.142180 -757.519245 -749.653315
2099976 426.638768 0.505000 82.643082 482.527197 370.750339 430.125108 423.152429 433.857432 419.420104 422.594348 430.683188
2099997 -66.000591 0.505523 83.113718 -9.962733 -122.038450 -62.312739 -69.688444 -58.552665 -73.448518 -69.487588 -62.513595

2500 rows × 11 columns


In [39]:
data = pd.read_feather("/Users/weilu/Research/server/jan_2018/rg_0.3_lipid_0.6_mem_1/21_Jan_162805.feather")

In [41]:
a = [1,2,3]

In [43]:
a+["123"]


Out[43]:
[1, 2, 3, '123']

In [40]:
data


Out[40]:
Step Run Temp Qw Energy AverageZ Distance Lipid Lipid1 Lipid2 ... Rg rg1 rg2 rg3 rg4 rg5 rg6 rg_all TotalE BiasTo
0 4000 0 T0 0.054497 -296.703350 -19.269009 261.903613 0.030251 -0.000200 -1.201127e-04 ... 2.685203 0.341854 0.786050 0.081576 0.046778 1.370529e+00 0.058414 2.685203 -296.673099 86.0
1 4000 4 T5 0.051348 -4.347924 -19.073004 261.678422 0.024061 -0.000322 -2.410720e-04 ... 4.170392 0.107406 0.938145 0.107614 0.181810 2.577284e+00 0.258131 4.170392 -4.323863 86.0
2 4000 11 T11 0.043486 398.833726 -18.794401 251.637817 0.020212 -0.000330 -2.363472e-04 ... 6.064533 0.201165 2.390571 0.111203 0.295438 2.562292e+00 0.503865 6.064533 398.853938 86.0
3 4000 1 T1 0.059210 -218.717123 -19.225217 263.549594 0.029584 -0.000231 -1.807104e-04 ... 3.605093 0.238323 0.833996 0.116581 0.186663 1.926612e+00 0.302919 3.605093 -218.687539 86.0
4 4000 5 T4 0.049233 -52.935576 -19.137697 256.696202 0.019575 -0.000252 -1.463907e-04 ... 3.626196 0.398929 1.148697 0.046579 0.184473 1.691668e+00 0.155851 3.626196 -52.916001 86.0
5 4000 10 T10 0.045102 346.064254 -18.909423 262.716318 0.050557 -0.000270 -1.947149e-04 ... 7.113876 0.641907 3.516954 0.122880 0.319632 2.112557e+00 0.399946 7.113876 346.114812 86.0
6 4000 9 T9 0.047384 202.075527 -19.055803 261.069258 0.035843 -0.000240 -1.924239e-04 ... 6.808215 1.681214 1.458348 0.089875 0.195731 3.118942e+00 0.264104 6.808215 202.111370 86.0
7 4000 2 T2 0.057678 -186.622793 -19.128903 259.091458 0.024619 -0.000225 -1.320464e-04 ... 2.189192 0.434005 0.467233 0.045596 0.056208 1.015639e+00 0.170511 2.189192 -186.598174 86.0
8 4000 3 T3 0.050626 -95.083329 -19.126567 257.566687 0.027207 -0.000267 -2.182024e-04 ... 3.068483 0.151276 1.235822 0.102324 0.170762 1.188846e+00 0.219454 3.068483 -95.056122 86.0
9 4000 7 T7 0.050384 115.043604 -19.216613 254.712696 0.023493 -0.000273 -2.313441e-04 ... 3.816546 0.324384 1.043689 0.074020 0.064850 1.516629e+00 0.792973 3.816546 115.067097 86.0
10 4000 8 T8 0.053711 62.936831 -19.074183 261.295825 0.016712 -0.000309 -2.230906e-04 ... 3.050711 0.303745 0.941701 0.058239 0.060020 1.246715e+00 0.440291 3.050711 62.953543 86.0
11 4000 6 T6 0.052592 -19.339679 -19.020194 260.539218 0.028957 -0.000324 -2.372088e-04 ... 4.117225 0.231551 1.934003 0.070249 0.111188 1.632154e+00 0.138081 4.117225 -19.310722 86.0
12 8000 2 T2 0.068230 -287.499105 -22.818575 183.178258 -0.010891 -0.000277 -5.844163e-06 ... 5.056126 1.339870 3.059601 0.000108 0.002813 3.473843e-01 0.306350 5.056126 -287.509996 86.0
13 8000 11 T11 0.045302 670.646077 -23.082657 175.497439 -0.003228 -0.000338 -5.888569e-06 ... 1.895361 0.771232 1.015244 0.000321 0.012190 9.049334e-02 0.005881 1.895361 670.642849 86.0
14 8000 5 T4 0.057893 -76.248511 -23.119345 178.457139 -0.008682 -0.000360 -4.418277e-06 ... 3.208984 0.157382 2.879665 0.000113 0.001491 1.124656e-01 0.057868 3.208984 -76.257193 86.0
15 8000 4 T5 0.063621 -63.305398 -22.594738 187.889771 -0.020579 -0.000287 -2.875114e-06 ... 3.247341 0.184793 2.191713 0.000062 0.012416 1.962700e-01 0.662086 3.247341 -63.325976 86.0
16 8000 8 T7 0.057363 145.735629 -23.188206 183.025276 -0.002759 -0.000190 -4.521497e-06 ... 3.226822 0.096708 1.852046 0.000113 0.002121 5.092753e-03 1.270741 3.226822 145.732870 86.0
17 8000 6 T6 0.064296 44.717943 -22.693341 178.707712 -0.009359 -0.000549 -7.196602e-06 ... 3.584781 0.904010 2.269332 0.000195 0.002198 6.230519e-02 0.346740 3.584781 44.708584 86.0
18 8000 9 T9 0.057938 309.215231 -23.589925 181.886965 -0.005367 -0.000167 -3.046128e-06 ... 4.347612 0.110811 1.997706 0.000169 0.015766 2.831332e-02 2.194848 4.347612 309.209864 86.0
19 8000 7 T8 0.052166 182.508713 -23.678461 185.034743 -0.001089 -0.000276 -4.673756e-06 ... 3.432586 0.893726 2.349258 0.000359 0.002521 6.332683e-03 0.180389 3.432586 182.507624 86.0
20 8000 1 T1 0.069846 -309.493109 -22.709055 185.883905 -0.018747 -0.000176 -4.710252e-06 ... 2.656778 0.068371 1.352555 0.000655 0.004130 1.334802e-01 1.097586 2.656778 -309.511856 86.0
21 8000 10 T10 0.045336 510.819701 -23.038870 186.963662 -0.005463 -0.000150 -4.065451e-06 ... 7.037090 0.083926 5.375455 0.000406 0.002220 1.158653e-01 1.459218 7.037090 510.814238 86.0
22 8000 3 T3 0.062714 -130.656653 -22.752195 176.487535 -0.007174 -0.000476 -8.659847e-06 ... 4.444591 0.140029 2.763884 0.000619 0.004020 1.139069e-02 1.524648 4.444591 -130.663827 86.0
23 8000 0 T0 0.063228 -353.444827 -22.681322 174.219772 -0.025108 -0.000108 -2.268255e-06 ... 5.078384 0.061594 3.373006 0.000181 0.010558 9.459462e-01 0.687099 5.078384 -353.469935 86.0
24 12000 3 T3 0.078280 -297.687297 -25.611650 128.057167 0.000594 -0.000214 -4.383049e-06 ... 3.226972 0.046243 3.122082 0.008540 0.000285 5.966001e-07 0.049821 3.226972 -297.686703 86.0
25 12000 1 T1 0.083062 -454.592999 -24.896864 131.932191 -0.000910 -0.000160 -4.287578e-06 ... 1.080333 0.116586 0.289617 0.003079 0.004507 3.315850e-04 0.666213 1.080333 -454.593908 86.0
26 12000 10 T10 0.064875 568.272287 -26.383257 134.355341 -0.000083 -0.000032 -8.497727e-07 ... 0.351243 0.134662 0.212524 0.000300 0.001322 1.605584e-05 0.002419 0.351243 568.272204 86.0
27 12000 11 T11 0.049752 793.759217 -25.437896 130.706598 -0.000156 -0.000177 -2.436235e-06 ... 0.893585 0.095078 0.750140 0.010049 0.000396 2.387621e-04 0.037683 0.893585 793.759061 86.0
28 12000 2 T2 0.093592 -361.160632 -25.874895 129.850645 0.000052 -0.000085 -1.426214e-06 ... 3.701797 0.022557 3.620534 0.005655 0.001845 6.951267e-06 0.051199 3.701797 -361.160580 86.0
29 12000 4 T5 0.080948 -75.666581 -26.328334 139.396501 -0.000353 -0.000073 -1.676622e-06 ... 2.991736 0.092609 2.480128 0.000586 0.000811 1.213858e-05 0.417590 2.991736 -75.666935 86.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2159970 19992000 3 T5 0.120646 -207.247654 -15.395885 29.855535 -5.679748 -5.683906 4.059823e-03 ... 6.778329 2.280378 4.462290 0.000631 0.023027 1.115555e-05 0.011991 6.778329 -212.927401 32.0
2159971 19992000 6 T11 0.095368 965.033079 -25.074529 34.953900 -0.001339 0.000608 -1.040250e-06 ... 5.657648 0.000024 3.637873 0.014438 0.421375 4.697231e-07 1.583937 5.657648 965.031740 32.0
2159972 19992000 1 T9 0.100476 346.006013 -14.468179 36.136584 -1.107945 -0.012504 2.544987e-04 ... 10.343371 4.360699 2.645087 0.000032 0.700175 7.351924e-05 2.637305 10.343371 344.898068 32.0
2159973 19992000 9 T8 0.108507 304.668547 -13.064876 29.635720 -2.526344 -0.016278 6.330513e-04 ... 13.367465 4.468020 2.916721 0.000122 0.122265 4.794770e+00 1.065567 13.367465 302.142203 32.0
2159974 19992000 0 T6 0.156532 -68.206765 -11.600270 29.356744 -3.919676 -0.018056 1.714777e-04 ... 9.751209 2.641917 2.640778 0.000006 0.009155 3.278709e+00 1.180643 9.751209 -72.126440 32.0
2159975 19992000 2 T0 0.786067 -921.769895 -1.346816 27.383970 -50.747780 -6.636078 -6.627734e+00 ... 21.513232 2.910778 3.804332 3.235735 5.063234 3.695964e+00 2.803191 21.513232 -972.517675 32.0
2159976 19996000 8 T3 0.466365 -543.146616 -0.102742 20.663056 -42.790196 -6.386506 -6.615421e+00 ... 20.969030 2.136930 1.983508 7.733709 2.892234 2.378909e+00 3.843740 20.969030 -585.936811 32.0
2159977 19996000 2 T0 0.779273 -935.339464 -1.389052 34.697973 -49.841013 -6.612129 -6.596403e+00 ... 20.094231 3.083349 3.010099 4.036905 4.441089 3.085518e+00 2.437272 20.094231 -985.180476 32.0
2159978 19996000 9 T8 0.100473 259.821297 -12.694007 25.218096 -0.449882 -0.020296 3.946770e-03 ... 7.855243 3.359840 3.341078 0.024445 0.015982 1.812073e-01 0.932690 7.855243 259.371416 32.0
2159979 19996000 1 T9 0.094553 367.130372 -13.745400 24.146262 0.648640 1.005123 1.218484e-03 ... 9.401317 2.873426 5.545915 0.005927 0.299496 3.503332e-05 0.676518 9.401317 367.779012 32.0
2159980 19996000 7 T1 0.743963 -844.595452 -1.534945 31.809130 -49.805794 -6.607097 -6.656698e+00 ... 18.179037 2.716124 2.885489 3.527761 3.593495 3.306537e+00 2.149632 18.179037 -894.401246 32.0
2159981 19996000 4 T10 0.085500 673.604851 -12.046878 24.199569 -5.863022 -5.972045 3.695144e-04 ... 10.499208 4.007590 3.038161 0.000663 0.001782 2.587526e+00 0.863485 10.499208 667.741829 32.0
2159982 19996000 6 T11 0.096769 757.215012 -24.104828 34.906723 0.003267 0.001313 -5.504026e-07 ... 3.879165 0.000662 2.827030 0.010084 1.013718 4.728583e-08 0.027671 3.879165 757.218279 32.0
2159983 19996000 3 T5 0.112224 -189.694475 -14.185427 29.143947 -5.149637 -5.151027 5.648661e-04 ... 8.029095 1.908472 6.065899 0.004687 0.010474 7.897143e-04 0.038774 8.029095 -194.844112 32.0
2159984 19996000 0 T6 0.142422 -119.291869 -11.193074 23.255394 -2.193827 0.452108 6.140231e-04 ... 7.635394 2.742750 2.423982 0.000332 0.005020 2.315578e+00 0.147731 7.635394 -121.485696 32.0
2159985 19996000 10 T2 0.659375 -743.986181 -1.347549 34.496343 -47.323672 -6.243796 -6.683817e+00 ... 18.884095 3.100673 3.014398 3.417946 5.186921 1.982925e+00 2.181233 18.884095 -791.309853 32.0
2159986 19996000 11 T4 0.137367 -402.236577 -12.503927 28.839359 -6.123669 -6.128551 1.579350e-03 ... 7.005989 1.988883 4.610147 0.279254 0.012535 2.170526e-02 0.093465 7.005989 -408.360246 32.0
2159987 19996000 5 T7 0.099399 95.156038 -12.857743 30.100776 0.931037 0.886067 6.226237e-03 ... 9.567468 4.137551 3.485864 0.072190 0.063926 1.043979e+00 0.763958 9.567468 96.087075 32.0
2159988 20000000 4 T10 0.072236 704.124022 -12.029508 35.251478 -4.100561 -4.161271 2.035148e-05 ... 12.218300 2.453349 5.112647 0.000014 0.005906 3.696052e+00 0.950332 12.218300 700.023461 32.0
2159989 20000000 10 T2 0.702559 -723.519067 -1.105432 36.436513 -49.054962 -6.567242 -6.743199e+00 ... 21.208834 3.406390 2.863472 3.211366 4.075684 3.564117e+00 4.087805 21.208834 -772.574028 32.0
2159990 20000000 5 T7 0.089762 39.623913 -13.071532 27.367445 1.840138 1.563843 6.741790e-03 ... 4.594773 2.274451 2.075575 0.000987 0.119310 4.717735e-02 0.077272 4.594773 41.464052 32.0
2159991 20000000 7 T1 0.733811 -909.529721 -1.631095 32.749602 -49.048529 -6.564740 -6.723312e+00 ... 18.956050 2.814666 2.888888 4.405557 2.840831 2.737685e+00 3.268423 18.956050 -958.578250 32.0
2159992 20000000 9 T8 0.104004 227.889498 -12.272300 35.137692 0.050831 0.168429 -2.524744e-05 ... 7.787840 3.185589 3.332966 0.000178 0.015166 1.228680e+00 0.025261 7.787840 227.940329 32.0
2159993 20000000 1 T9 0.079787 287.499340 -14.199986 39.201000 1.736927 1.639302 2.434053e-03 ... 6.383877 2.786798 3.532119 0.000153 0.018797 5.127556e-06 0.046005 6.383877 289.236267 32.0
2159994 20000000 3 T5 0.108671 -212.676219 -14.680870 30.737151 -4.914204 -4.911378 1.122974e-04 ... 4.684155 2.336774 2.194923 0.000020 0.149154 7.638658e-04 0.002520 4.684155 -217.590423 32.0
2159995 20000000 0 T6 0.116612 -138.643785 -10.934199 23.860409 -1.531767 0.621273 -1.949416e-06 ... 16.048327 2.100090 4.596845 0.000118 0.007056 9.048833e+00 0.295386 16.048327 -140.175552 32.0
2159996 20000000 6 T11 0.085018 836.787327 -23.921623 31.943791 0.002204 0.000821 9.056698e-07 ... 4.968308 0.003702 4.863530 0.000011 0.083611 3.994179e-07 0.017454 4.968308 836.789531 32.0
2159997 20000000 8 T3 0.530940 -590.297832 -0.467377 26.153952 -41.832423 -6.436779 -6.280445e+00 ... 17.863619 2.434298 2.508628 3.180033 4.879486 2.567553e+00 2.293620 17.863619 -632.130254 32.0
2159998 20000000 2 T0 0.748213 -943.212257 -1.179557 33.237322 -48.123529 -6.275100 -6.779777e+00 ... 19.684160 3.024914 3.391045 3.707089 3.091070 2.579848e+00 3.890193 19.684160 -991.335787 32.0
2159999 20000000 11 T4 0.126222 -436.978597 -12.605098 34.202018 -6.394025 -6.395730 -3.994546e-05 ... 4.496778 2.031776 2.353160 0.000406 0.020516 1.924737e-02 0.071672 4.496778 -443.372622 32.0

2160000 rows × 35 columns


In [2]:
data = pd.read_feather("/Users/weilu/Research/server/jan_2018/rg_0.3_lipid_0.6_mem_1/complete.feather")

In [41]:
chosen = data[["Step", "Run"]]

In [8]:
data


Out[8]:
Step Run Temp Qw Energy Distance Lipid Lipid1 Lipid2 Lipid3 ... Rg rg1 rg2 rg3 rg4 rg5 rg6 rg_all TotalE BiasTo
0 4000 0 T0 0.054497 -296.703350 261.903613 0.030251 -0.000200 -1.201127e-04 -0.000105 ... 2.685203 0.341854 0.786050 0.081576 0.046778 1.370529e+00 0.058414 2.685203 -296.673099 86.0
1 4000 4 T5 0.051348 -4.347924 261.678422 0.024061 -0.000322 -2.410720e-04 -0.000220 ... 4.170392 0.107406 0.938145 0.107614 0.181810 2.577284e+00 0.258131 4.170392 62.953543 86.0
2 4000 11 T11 0.043486 398.833726 251.637817 0.020212 -0.000330 -2.363472e-04 -0.000247 ... 6.064533 0.201165 2.390571 0.111203 0.295438 2.562292e+00 0.503865 6.064533 115.067097 86.0
3 4000 1 T1 0.059210 -218.717123 263.549594 0.029584 -0.000231 -1.807104e-04 -0.000181 ... 3.605093 0.238323 0.833996 0.116581 0.186663 1.926612e+00 0.302919 3.605093 -95.056122 86.0
4 4000 5 T4 0.049233 -52.935576 256.696202 0.019575 -0.000252 -1.463907e-04 -0.000164 ... 3.626196 0.398929 1.148697 0.046579 0.184473 1.691668e+00 0.155851 3.626196 -186.598174 86.0
5 4000 10 T10 0.045102 346.064254 262.716318 0.050557 -0.000270 -1.947149e-04 -0.000178 ... 7.113876 0.641907 3.516954 0.122880 0.319632 2.112557e+00 0.399946 7.113876 -19.310722 86.0
6 4000 9 T9 0.047384 202.075527 261.069258 0.035843 -0.000240 -1.924239e-04 -0.000177 ... 6.808215 1.681214 1.458348 0.089875 0.195731 3.118942e+00 0.264104 6.808215 346.114812 86.0
7 4000 2 T2 0.057678 -186.622793 259.091458 0.024619 -0.000225 -1.320464e-04 -0.000122 ... 2.189192 0.434005 0.467233 0.045596 0.056208 1.015639e+00 0.170511 2.189192 -52.916001 86.0
8 4000 3 T3 0.050626 -95.083329 257.566687 0.027207 -0.000267 -2.182024e-04 -0.000217 ... 3.068483 0.151276 1.235822 0.102324 0.170762 1.188846e+00 0.219454 3.068483 202.111370 86.0
9 4000 7 T7 0.050384 115.043604 254.712696 0.023493 -0.000273 -2.313441e-04 -0.000169 ... 3.816546 0.324384 1.043689 0.074020 0.064850 1.516629e+00 0.792973 3.816546 -218.687539 86.0
10 4000 8 T8 0.053711 62.936831 261.295825 0.016712 -0.000309 -2.230906e-04 -0.000236 ... 3.050711 0.303745 0.941701 0.058239 0.060020 1.246715e+00 0.440291 3.050711 398.853938 86.0
11 4000 6 T6 0.052592 -19.339679 260.539218 0.028957 -0.000324 -2.372088e-04 -0.000209 ... 4.117225 0.231551 1.934003 0.070249 0.111188 1.632154e+00 0.138081 4.117225 -4.323863 86.0
12 8000 2 T2 0.068230 -287.499105 183.178258 -0.010891 -0.000277 -5.844163e-06 -0.000029 ... 5.056126 1.339870 3.059601 0.000108 0.002813 3.473843e-01 0.306350 5.056126 -130.663827 86.0
13 8000 11 T11 0.045302 670.646077 175.497439 -0.003228 -0.000338 -5.888569e-06 -0.000041 ... 1.895361 0.771232 1.015244 0.000321 0.012190 9.049334e-02 0.005881 1.895361 510.814238 86.0
14 8000 5 T4 0.057893 -76.248511 178.457139 -0.008682 -0.000360 -4.418277e-06 -0.000017 ... 3.208984 0.157382 2.879665 0.000113 0.001491 1.124656e-01 0.057868 3.208984 309.209864 86.0
15 8000 4 T5 0.063621 -63.305398 187.889771 -0.020579 -0.000287 -2.875114e-06 -0.000017 ... 3.247341 0.184793 2.191713 0.000062 0.012416 1.962700e-01 0.662086 3.247341 -309.511856 86.0
16 8000 8 T7 0.057363 145.735629 183.025276 -0.002759 -0.000190 -4.521497e-06 -0.000018 ... 3.226822 0.096708 1.852046 0.000113 0.002121 5.092753e-03 1.270741 3.226822 182.507624 86.0
17 8000 6 T6 0.064296 44.717943 178.707712 -0.009359 -0.000549 -7.196602e-06 -0.000034 ... 3.584781 0.904010 2.269332 0.000195 0.002198 6.230519e-02 0.346740 3.584781 -353.469935 86.0
18 8000 9 T9 0.057938 309.215231 181.886965 -0.005367 -0.000167 -3.046128e-06 -0.000016 ... 4.347612 0.110811 1.997706 0.000169 0.015766 2.831332e-02 2.194848 4.347612 44.708584 86.0
19 8000 7 T8 0.052166 182.508713 185.034743 -0.001089 -0.000276 -4.673756e-06 -0.000014 ... 3.432586 0.893726 2.349258 0.000359 0.002521 6.332683e-03 0.180389 3.432586 -287.509996 86.0
20 8000 1 T1 0.069846 -309.493109 185.883905 -0.018747 -0.000176 -4.710252e-06 -0.000020 ... 2.656778 0.068371 1.352555 0.000655 0.004130 1.334802e-01 1.097586 2.656778 145.732870 86.0
21 8000 10 T10 0.045336 510.819701 186.963662 -0.005463 -0.000150 -4.065451e-06 -0.000013 ... 7.037090 0.083926 5.375455 0.000406 0.002220 1.158653e-01 1.459218 7.037090 -63.325976 86.0
22 8000 3 T3 0.062714 -130.656653 176.487535 -0.007174 -0.000476 -8.659847e-06 -0.000031 ... 4.444591 0.140029 2.763884 0.000619 0.004020 1.139069e-02 1.524648 4.444591 -76.257193 86.0
23 8000 0 T0 0.063228 -353.444827 174.219772 -0.025108 -0.000108 -2.268255e-06 -0.000010 ... 5.078384 0.061594 3.373006 0.000181 0.010558 9.459462e-01 0.687099 5.078384 670.642849 86.0
24 12000 3 T3 0.078280 -297.687297 128.057167 0.000594 -0.000214 -4.383049e-06 -0.000007 ... 3.226972 0.046243 3.122082 0.008540 0.000285 5.966001e-07 0.049821 3.226972 120.260907 86.0
25 12000 1 T1 0.083062 -454.592999 131.932191 -0.000910 -0.000160 -4.287578e-06 -0.000010 ... 1.080333 0.116586 0.289617 0.003079 0.004507 3.315850e-04 0.666213 1.080333 -108.532419 86.0
26 12000 10 T10 0.064875 568.272287 134.355341 -0.000083 -0.000032 -8.497727e-07 -0.000003 ... 0.351243 0.134662 0.212524 0.000300 0.001322 1.605584e-05 0.002419 0.351243 -504.996088 86.0
27 12000 11 T11 0.049752 793.759217 130.706598 -0.000156 -0.000177 -2.436235e-06 -0.000005 ... 0.893585 0.095078 0.750140 0.010049 0.000396 2.387621e-04 0.037683 0.893585 387.465230 86.0
28 12000 2 T2 0.093592 -361.160632 129.850645 0.000052 -0.000085 -1.426214e-06 -0.000007 ... 3.701797 0.022557 3.620534 0.005655 0.001845 6.951267e-06 0.051199 3.701797 292.995481 86.0
29 12000 4 T5 0.080948 -75.666581 139.396501 -0.000353 -0.000073 -1.676622e-06 -0.000004 ... 2.991736 0.092609 2.480128 0.000586 0.000811 1.213858e-05 0.417590 2.991736 -55.742563 86.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2159970 19992000 3 T5 0.120646 -207.247654 29.855535 -5.679748 -5.683906 4.059823e-03 -0.001051 ... 6.778329 2.280378 4.462290 0.000631 0.023027 1.115555e-05 0.011991 6.778329 -790.618228 32.0
2159971 19992000 6 T11 0.095368 965.033079 34.953900 -0.001339 0.000608 -1.040250e-06 -0.000002 ... 5.657648 0.000024 3.637873 0.014438 0.421375 4.697231e-07 1.583937 5.657648 83.182548 32.0
2159972 19992000 1 T9 0.100476 346.006013 36.136584 -1.107945 -0.012504 2.544987e-04 -1.085724 ... 10.343371 4.360699 2.645087 0.000032 0.700175 7.351924e-05 2.637305 10.343371 -396.025749 32.0
2159973 19992000 9 T8 0.108507 304.668547 29.635720 -2.526344 -0.016278 6.330513e-04 -0.374296 ... 13.367465 4.468020 2.916721 0.000122 0.122265 4.794770e+00 1.065567 13.367465 -635.836316 32.0
2159974 19992000 0 T6 0.156532 -68.206765 29.356744 -3.919676 -0.018056 1.714777e-04 -0.089392 ... 9.751209 2.641917 2.640778 0.000006 0.009155 3.278709e+00 1.180643 9.751209 -879.229519 32.0
2159975 19992000 2 T0 0.786067 -921.769895 27.383970 -50.747780 -6.636078 -6.627734e+00 -6.434285 ... 21.513232 2.910778 3.804332 3.235735 5.063234 3.695964e+00 2.803191 21.513232 710.925419 32.0
2159976 19996000 8 T3 0.466365 -543.146616 20.663056 -42.790196 -6.386506 -6.615421e+00 -6.343493 ... 20.969030 2.136930 1.983508 7.733709 2.892234 2.378909e+00 3.843740 20.969030 -408.360246 32.0
2159977 19996000 2 T0 0.779273 -935.339464 34.697973 -49.841013 -6.612129 -6.596403e+00 -6.467844 ... 20.094231 3.083349 3.010099 4.036905 4.441089 3.085518e+00 2.437272 20.094231 -791.309853 32.0
2159978 19996000 9 T8 0.100473 259.821297 25.218096 -0.449882 -0.020296 3.946770e-03 -0.208630 ... 7.855243 3.359840 3.341078 0.024445 0.015982 1.812073e-01 0.932690 7.855243 -121.485696 32.0
2159979 19996000 1 T9 0.094553 367.130372 24.146262 0.648640 1.005123 1.218484e-03 -0.354044 ... 9.401317 2.873426 5.545915 0.005927 0.299496 3.503332e-05 0.676518 9.401317 -194.844112 32.0
2159980 19996000 7 T1 0.743963 -844.595452 31.809130 -49.805794 -6.607097 -6.656698e+00 -6.302868 ... 18.179037 2.716124 2.885489 3.527761 3.593495 3.306537e+00 2.149632 18.179037 757.218279 32.0
2159981 19996000 4 T10 0.085500 673.604851 24.199569 -5.863022 -5.972045 3.695144e-04 0.004780 ... 10.499208 4.007590 3.038161 0.000663 0.001782 2.587526e+00 0.863485 10.499208 96.087075 32.0
2159982 19996000 6 T11 0.096769 757.215012 34.906723 0.003267 0.001313 -5.504026e-07 0.000014 ... 3.879165 0.000662 2.827030 0.010084 1.013718 4.728583e-08 0.027671 3.879165 -894.401246 32.0
2159983 19996000 3 T5 0.112224 -189.694475 29.143947 -5.149637 -5.151027 5.648661e-04 -0.001016 ... 8.029095 1.908472 6.065899 0.004687 0.010474 7.897143e-04 0.038774 8.029095 367.779012 32.0
2159984 19996000 0 T6 0.142422 -119.291869 23.255394 -2.193827 0.452108 6.140231e-04 0.019223 ... 7.635394 2.742750 2.423982 0.000332 0.005020 2.315578e+00 0.147731 7.635394 667.741829 32.0
2159985 19996000 10 T2 0.659375 -743.986181 34.496343 -47.323672 -6.243796 -6.683817e+00 -6.224508 ... 18.884095 3.100673 3.014398 3.417946 5.186921 1.982925e+00 2.181233 18.884095 259.371416 32.0
2159986 19996000 11 T4 0.137367 -402.236577 28.839359 -6.123669 -6.128551 1.579350e-03 -0.001048 ... 7.005989 1.988883 4.610147 0.279254 0.012535 2.170526e-02 0.093465 7.005989 -985.180476 32.0
2159987 19996000 5 T7 0.099399 95.156038 30.100776 0.931037 0.886067 6.226237e-03 0.019357 ... 9.567468 4.137551 3.485864 0.072190 0.063926 1.043979e+00 0.763958 9.567468 -585.936811 32.0
2159988 20000000 4 T10 0.072236 704.124022 35.251478 -4.100561 -4.161271 2.035148e-05 -0.000352 ... 12.218300 2.453349 5.112647 0.000014 0.005906 3.696052e+00 0.950332 12.218300 836.789531 32.0
2159989 20000000 10 T2 0.702559 -723.519067 36.436513 -49.054962 -6.567242 -6.743199e+00 -6.284986 ... 21.208834 3.406390 2.863472 3.211366 4.075684 3.564117e+00 4.087805 21.208834 -140.175552 32.0
2159990 20000000 5 T7 0.089762 39.623913 27.367445 1.840138 1.563843 6.741790e-03 0.269520 ... 4.594773 2.274451 2.075575 0.000987 0.119310 4.717735e-02 0.077272 4.594773 289.236267 32.0
2159991 20000000 7 T1 0.733811 -909.529721 32.749602 -49.048529 -6.564740 -6.723312e+00 -6.300132 ... 18.956050 2.814666 2.888888 4.405557 2.840831 2.737685e+00 3.268423 18.956050 -217.590423 32.0
2159992 20000000 9 T8 0.104004 227.889498 35.137692 0.050831 0.168429 -2.524744e-05 -0.070349 ... 7.787840 3.185589 3.332966 0.000178 0.015166 1.228680e+00 0.025261 7.787840 -991.335787 32.0
2159993 20000000 1 T9 0.079787 287.499340 39.201000 1.736927 1.639302 2.434053e-03 0.095977 ... 6.383877 2.786798 3.532119 0.000153 0.018797 5.127556e-06 0.046005 6.383877 227.940329 32.0
2159994 20000000 3 T5 0.108671 -212.676219 30.737151 -4.914204 -4.911378 1.122974e-04 -0.002640 ... 4.684155 2.336774 2.194923 0.000020 0.149154 7.638658e-04 0.002520 4.684155 -958.578250 32.0
2159995 20000000 0 T6 0.116612 -138.643785 23.860409 -1.531767 0.621273 -1.949416e-06 0.020929 ... 16.048327 2.100090 4.596845 0.000118 0.007056 9.048833e+00 0.295386 16.048327 41.464052 32.0
2159996 20000000 6 T11 0.085018 836.787327 31.943791 0.002204 0.000821 9.056698e-07 -0.000007 ... 4.968308 0.003702 4.863530 0.000011 0.083611 3.994179e-07 0.017454 4.968308 -772.574028 32.0
2159997 20000000 8 T3 0.530940 -590.297832 26.153952 -41.832423 -6.436779 -6.280445e+00 -6.408280 ... 17.863619 2.434298 2.508628 3.180033 4.879486 2.567553e+00 2.293620 17.863619 700.023461 32.0
2159998 20000000 2 T0 0.748213 -943.212257 33.237322 -48.123529 -6.275100 -6.779777e+00 -5.804860 ... 19.684160 3.024914 3.391045 3.707089 3.091070 2.579848e+00 3.890193 19.684160 -632.130254 32.0
2159999 20000000 11 T4 0.126222 -436.978597 34.202018 -6.394025 -6.395730 -3.994546e-05 -0.000558 ... 4.496778 2.031776 2.353160 0.000406 0.020516 1.924737e-02 0.071672 4.496778 -443.372622 32.0

2160000 rows × 34 columns


In [34]:
location = "/Users/weilu/Research/server/jan_2018/rg_0.3_lipid_0.6_mem_1/simulation/dis_30.0/0/z_0.dat"
pd.read_table(location, header=None)


Out[34]:
0
0 -16.315357
1 -19.264572
2 -22.515423
3 -24.297303
4 -25.296926
5 -25.346119
6 -25.315244
7 -26.360947
8 -26.172104
9 -25.764459
10 -25.719458
11 -25.652047
12 -25.296847
13 -24.749981
14 -26.345227
15 -27.433790
16 -28.452557
17 -29.142594
18 -28.678802
19 -28.425092
20 -27.772081
21 -27.676379
22 -27.244138
23 -27.446743
24 -28.820309
25 -29.991294
26 -30.900774
27 -31.688468
28 -32.295219
29 -32.123183
... ...
4971 -18.690375
4972 -18.566975
4973 -17.846128
4974 -15.877359
4975 -14.451235
4976 -13.407468
4977 -12.665750
4978 -12.279917
4979 -14.318140
4980 -14.625609
4981 -14.312085
4982 -13.820385
4983 -11.770300
4984 -9.118419
4985 -8.600964
4986 -10.363238
4987 -10.829318
4988 -11.752105
4989 -12.023568
4990 -11.609370
4991 -12.639797
4992 -12.556802
4993 -12.915560
4994 -12.460321
4995 -10.788835
4996 -9.364594
4997 -9.487168
4998 -10.385041
4999 -10.038376
5000 -10.438385

5001 rows × 1 columns


In [32]:
a = read_lammps("/Users/weilu/Research/server/jan_2018/rg_0.3_lipid_0.6_mem_1/simulation/dis_30.0/0/dump.lammpstrj.10")
z_list = []
for atoms in a:
    b = np.array(atoms)
    z_list.append(b.mean(axis=0)[2])
plt.plot(z_list)


Out[32]:
[<matplotlib.lines.Line2D at 0x11a5ca588>]

In [23]:
atoms = a
b = np.array(a[0])

In [29]:
b.mean(axis=0)[2]


Out[29]:
-16.315356524637789

In [24]:
b.shape


Out[24]:
(181, 3)

In [17]:
first = a[0]
len(first)


Out[17]:
181

In [18]:
first


Out[18]:
[[156.66762503974203, 35.61035306724857, -16.392111729786457],
 [153.74251556483804, 33.61691495714608, -17.640888102654685],
 [150.07333183091086, 34.49813160983165, -17.326635526922637],
 [147.29325377937582, 35.452069607470364, -19.790725435483857],
 [144.33290649060982, 34.56057173535633, -17.361770597134335],
 [143.11664552583554, 38.13520977236943, -18.04333279461392],
 [141.57322927867912, 36.91038960426643, -21.160138880775804],
 [139.90740799389673, 34.05115667062104, -19.696989503211885],
 [138.75717156456918, 35.99566219871573, -16.67019317788204],
 [137.60100034553855, 39.13287521581994, -18.287042583231845],
 [135.3164772342104, 36.93351159356681, -20.498734361963972],
 [134.24524769280507, 35.1034760441295, -17.2990982111592],
 [133.44182553675105, 38.44951826506394, -15.795306300230898],
 [131.19068561750274, 39.82778240681252, -18.52204585419255],
 [128.98479846974035, 36.79721015524442, -18.33293810950424],
 [127.22364962535235, 36.45620920792499, -15.03723944133329],
 [126.24589302177046, 40.17674162021673, -16.072769749160837],
 [126.34492982494052, 40.352726844826776, -19.84296454142717],
 [123.84193226766789, 38.49597733193728, -22.056001377166883],
 [122.26698745021386, 36.27510488242798, -19.271351666094795],
 [119.50285914600587, 38.499805903188886, -18.102424420717508],
 [118.40603582400595, 39.117926580876905, -21.65214437534968],
 [117.18235637210287, 35.565335091801394, -22.233434390558262],
 [113.70197313560473, 35.44845612449132, -20.770435877496546],
 [109.90667512048717, 36.128500715849874, -20.974466484390653],
 [106.97006699053347, 35.150816972920346, -18.828555263907948],
 [104.70779934059183, 35.86480249368915, -21.635283903995116],
 [102.42290530490735, 32.78651505973595, -21.020870951152403],
 [101.39618668627506, 34.53093257139732, -17.744384786454688],
 [100.1057408502123, 37.6526592328771, -19.540254008935904],
 [97.40800800580743, 36.10167920826142, -21.25131193415494],
 [94.84566255150403, 35.57238998714142, -18.480112793158725],
 [94.83008372853348, 39.20430603113771, -16.986608750693858],
 [93.123089840186, 42.015101085802186, -18.838952191047674],
 [89.61340357952892, 40.53710051206672, -19.379319755622724],
 [86.5948211668015, 42.197517449761826, -20.932860599385698],
 [83.06584683960946, 41.59038778280171, -22.742462126856534],
 [79.19117101221323, 41.41283241380197, -22.19835748497392],
 [76.87511933058747, 44.461687168537814, -21.426567409309712],
 [73.69258835231253, 43.79906472725677, -19.27962194904685],
 [71.8324027047544, 40.480876437619074, -18.50646863992901],
 [68.23925846389787, 40.0705955577075, -17.128366853425895],
 [64.80153152839065, 38.743888074891984, -18.387013036498445],
 [61.204307119613276, 38.363676535484544, -17.14523459535888],
 [59.76957170889446, 35.60048051553798, -14.779697377272479],
 [56.035105288233325, 36.120284343838016, -14.154136810068236],
 [54.955715410986244, 38.51866914469255, -17.074964454935483],
 [54.7617219725669, 35.513584853423026, -18.94186722857413],
 [52.214213492521225, 33.943418954894845, -16.731811329986364],
 [49.849199795845124, 36.8377112769678, -15.692173145351862],
 [47.25569669560056, 37.82511700981712, -18.380469515920996],
 [45.49269322943033, 34.489915237819794, -17.84030189225248],
 [43.08428138305047, 36.69448399626892, -15.699752723354077],
 [40.080165020224285, 37.247949139224865, -18.076850161127307],
 [37.97034728078049, 34.56945488101314, -16.752423419805332],
 [34.144262544078174, 35.21112772454667, -17.05382524818111],
 [31.801504308788623, 34.61709693338557, -14.159135332731568],
 [28.62194072536522, 32.35307132375219, -14.510613269970886],
 [27.138243299596013, 34.589866758079246, -11.604853898877826],
 [27.143807164942643, 37.185917681418054, -14.496944582542435],
 [24.01914038627271, 35.14404169233465, -15.579679120757865],
 [22.798057404864693, 34.52230753166759, -12.10192516896541],
 [22.755401103873822, 38.06364990408812, -10.996760896326165],
 [20.974593268594333, 38.44517348195819, -14.278081995672773],
 [18.983471323212086, 35.28686030531567, -14.355695420299753],
 [17.351404154865946, 35.50547602554745, -10.941595382569052],
 [16.559109729505195, 38.96293397166889, -11.387336369015749],
 [15.675567912459627, 38.30814074350909, -14.962697836088504],
 [12.922938263301376, 36.154547905657104, -13.581342465742711],
 [11.212976980102354, 37.90392535288375, -10.877523410248184],
 [10.668460024845075, 40.60349826180654, -13.623929878834284],
 [6.919156629926306, 40.18001096195967, -13.618586003696034],
 [4.66690393760868, 37.18826214358898, -12.642801674029817],
 [1.9558178163719049, 38.26060623527294, -9.954450774122538],
 [2.820071566882433, 41.94599322382809, -10.002472944582603],
 [1.2228712880418868, 42.75777938213073, -13.571490831984441],
 [0.4698948444640223, 39.810661380316596, -15.838675300502555],
 [-2.256028251030415, 37.00560918252952, -15.1162888051981],
 [-5.402579566730452, 38.35010446548589, -13.310331655159983],
 [-8.687485667383442, 39.820813546781515, -14.618145124793651],
 [-11.442711787036842, 39.56567583786874, -11.914398775083317],
 [-11.843310091994539, 41.169309471607534, -8.557445483729014],
 [-15.309227278591408, 40.09896570085839, -7.095750221848974],
 [-18.2417552406242, 39.48346910009563, -9.600864369141597],
 [-20.172416515906377, 39.749748381527105, -6.346517115730922],
 [-20.27627533571021, 43.468646122947376, -7.337769600984389],
 [-21.686900663260275, 42.71078259457598, -10.718733977568723],
 [-24.650957195590678, 40.28983503392971, -9.413247093029259],
 [-25.581235481547964, 42.863839409330936, -6.803509322281627],
 [-25.423963554416446, 45.58709353706277, -9.730407900129062],
 [-27.765979940993105, 43.23078000232132, -11.745630473523248],
 [-30.285298169949215, 42.90980377317739, -8.808771203241248],
 [-30.40659043450586, 46.55572206371745, -8.43071930187906],
 [-31.363946198483433, 47.152807108348924, -12.192880104991968],
 [-33.664789981495005, 44.00606568077022, -12.303647367211363],
 [-35.72267831103687, 45.56719787185081, -9.545044503326736],
 [-35.85658200371256, 49.36019352316861, -10.492128224682414],
 [-36.83545138036379, 48.47123369267081, -14.19588810664158],
 [-39.675990101998906, 46.36848772245243, -13.036467142547643],
 [-41.594410873518484, 49.28828951365121, -11.359744523914168],
 [-40.97459627390339, 51.35216903301768, -14.420021862865298],
 [-43.813651298112745, 50.17518449673241, -16.679881223625877],
 [-44.6882909306037, 46.3382678201575, -16.12386373900309],
 [-48.37527903364017, 46.96391658738518, -17.03919320911209],
 [-51.6368168998373, 45.123900942100995, -16.281289938228916],
 [-52.5619022448044, 41.680079592459975, -15.113871337873652],
 [-55.57454986782872, 40.49008221568472, -17.019362706473203],
 [-58.664720681349536, 42.24971937351257, -15.414600637745634],
 [-61.06868143545208, 39.73656347041907, -13.956358900614804],
 [-63.559438488962115, 41.37252487152389, -11.48636164708783],
 [-64.19520283590421, 44.87396836938422, -12.717143338368071],
 [-64.9177634822538, 42.965640688734425, -15.869029965403504],
 [-67.65555615715442, 40.623953156527165, -14.265049483856018],
 [-69.94490128511632, 43.62652091500772, -13.280340519180001],
 [-70.89595133503434, 43.96341367632122, -16.93336994021788],
 [-71.33698039484423, 40.264712723694494, -17.61247831748092],
 [-74.125218782221, 39.90603152037049, -14.79585623780957],
 [-75.77063922739907, 42.56645836368703, -17.148488179201557],
 [-76.39898508721231, 40.10565494613507, -19.78214615294898],
 [-78.45761526546707, 38.26297220627112, -17.265035551264365],
 [-79.68463303657819, 41.22493129889201, -15.00392201572644],
 [-80.09042428252607, 43.165479202771564, -18.248635752731424],
 [-82.41018520771621, 40.542370174744484, -19.932483538215898],
 [-85.81193248064852, 41.51349372536088, -18.411969296923],
 [-89.38578865497009, 42.44837490205062, -19.76987705186626],
 [-91.94442486570907, 44.00662491027888, -17.683021104595046],
 [-95.26939079685783, 42.477046168783104, -19.276095718513446],
 [-97.99308834621365, 43.67442107330722, -16.89730787125771],
 [-100.46196086269359, 43.682164251119445, -19.83453067046068],
 [-103.78433032334726, 45.73214906807843, -19.586931122388382],
 [-107.62710665608948, 45.71887812166137, -18.97042242531628],
 [-110.79665528188893, 47.41063342066872, -20.168795513292093],
 [-114.58824405344212, 47.59236150215616, -19.56457409374876],
 [-117.86424796954051, 47.78570435036194, -21.305212367267085],
 [-121.3279396099987, 49.421730277948534, -20.82594674372858],
 [-124.45112269124286, 48.71856369728959, -18.420221403429007],
 [-128.13514339942776, 49.259553720436955, -18.461899994218154],
 [-130.04021089411543, 47.82809824888386, -15.458533107844794],
 [-131.8410486446428, 44.88534653900274, -16.47799543736549],
 [-134.16340604032803, 45.442618744383026, -13.478900015813519],
 [-134.84961609974627, 49.101205734176986, -14.798455469594503],
 [-135.3848599460925, 47.38170404800916, -18.30451014788443],
 [-137.15045988275784, 44.64298507348013, -16.561734324310805],
 [-139.23839308517157, 47.017409040771284, -14.15422769229848],
 [-141.19798646025623, 48.78100382281427, -17.041119912393228],
 [-142.1341995359166, 45.01181844326906, -17.795496952742994],
 [-143.45765763970272, 45.034101588306456, -14.195542754166658],
 [-146.06859418470006, 47.85044592040303, -14.761320990317472],
 [-147.60941396136138, 46.01662481736862, -17.71141271332276],
 [-147.83530689443472, 42.490360132854676, -16.1493652928091],
 [-149.92361102120486, 44.10537193621199, -13.500130104798137],
 [-153.1673445182928, 44.70753306407592, -15.311285718406115],
 [-154.0312273444469, 41.075574002425114, -16.21807225887233],
 [-157.08616034410568, 42.10801921954887, -18.24572752136367],
 [-159.2241683346391, 45.17728585135083, -18.110949173914243],
 [-161.98681294142133, 45.14016161550667, -15.407130118419712],
 [-165.37557786187818, 44.33244062555545, -16.824293087480996],
 [-167.48317005518334, 42.19833478519756, -14.496471994945175],
 [-170.54107044969365, 40.94501542098012, -16.452239413314803],
 [-171.48729848297796, 43.91293245875097, -18.4792039708563],
 [-174.99661381927854, 43.05795657531793, -19.790507318131276],
 [-178.411899831221, 43.47567950946015, -18.379142635359457],
 [-181.40321930374995, 41.85544106107959, -16.90276080507225],
 [-184.62325073446118, 41.464797740452894, -19.24354170364063],
 [-187.32602815011364, 40.516903723273174, -16.56427902675759],
 [-187.06111397474254, 43.569501013951594, -14.295749501231889],
 [-189.14073847157195, 46.12737376891068, -16.362011535130183],
 [-190.20213851753158, 43.83874851354442, -19.000340855512064],
 [-192.8487950780543, 42.083305577031524, -16.66517647877266],
 [-194.51224244695544, 45.56526207739775, -16.860882273376568],
 [-195.75650820064115, 44.905285221869214, -20.305791387159434],
 [-197.2529283318363, 41.58757012643115, -19.534637487106924],
 [-199.5088160828471, 42.731990298250565, -16.78864907677994],
 [-201.66815222387595, 44.7283536088599, -19.14587965902219],
 [-202.37980769414614, 41.71262244809857, -21.62806421962466],
 [-204.21632836776325, 40.04736602427083, -18.551237226546398],
 [-206.6146139792122, 42.96228531168246, -17.70928606913509],
 [-207.43328112631602, 43.475894597732704, -21.248276467664848],
 [-208.64034316705056, 40.01441450091436, -21.888145533198447],
 [-210.6185272708801, 40.7043316439835, -18.820157745833555],
 [-213.57568831942424, 41.80799258815246, -20.67231942172689]]

In [6]:
df2 = pd.DataFrame({ 'A' : 1.,
   ....:                      'B' : pd.Timestamp('20130102'),
   ....:                      'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
   ....:                      'D' : np.array([3] * 4,dtype='int32'),
   ....:                      'E' : pd.Categorical(["test","train","test","train"]),
   ....:                      'F' : 'foo' })

In [7]:
df2


Out[7]:
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo

In [8]:
s= "Name1=Value1;Name2=Value2;Name3=Value3"
dict(item.split("=") for item in s.split(";"))


Out[8]:
{'Name1': 'Value1', 'Name2': 'Value2', 'Name3': 'Value3'}

In [44]:
df2.assign(Run=1,**{'pressure': 0.5, 'rg': 0.2, 'mem': 1.0})


Out[44]:
A B C D E F Run mem pressure rg
0 1.0 2013-01-02 1.0 3 test foo 1 1.0 0.5 0.2
1 1.0 2013-01-02 1.0 3 train foo 1 1.0 0.5 0.2
2 1.0 2013-01-02 1.0 3 test foo 1 1.0 0.5 0.2
3 1.0 2013-01-02 1.0 3 train foo 1 1.0 0.5 0.2

In [28]:
splited


Out[28]:
['pressure', '0.5', 'rg', '0.2', 'mem', '1', '']

In [17]:
s.split("_")


Out[17]:
['pressure', '0.5', 'rg', '0.2', 'mem', '1', '']

In [31]:
splited[2*i+1]


Out[31]:
'0.5'

In [35]:
dict([splited[2*i],splited[2*i+1]])


---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-35-434f75c6b6c6> in <module>()
----> 1 dict([splited[2*i],splited[2*i+1]])

ValueError: dictionary update sequence element #0 has length 8; 2 is required

In [38]:
dict([['pressure', '0.5']])


Out[38]:
{'pressure': '0.5'}

In [41]:
s= "pressure_0.5_rg_0.2_mem_1_"
splited = s.split("_")
variable_dic = {}
for i in range(len(s.split("_"))//2):
#     print(i)
#     print([splited[2*i],splited[2*i+1]])
    tmp = dict([[splited[2*i],float(splited[2*i+1])]])
#     print(tmp)
    variable_dic.update(tmp)
variable_dic


Out[41]:
{'mem': 1.0, 'pressure': 0.5, 'rg': 0.2}

In [22]:
variable_dic = {}

In [24]:
variable_dic.update(dict(item.split("=") for item in s.split(";")))

In [25]:
variable_dic


Out[25]:
{'Name1': 'Value1', 'Name2': 'Value2', 'Name3': 'Value3'}

In [20]:
s= "Name1=Value1;Name2=Value2;Name3=Value3"
for item in s.split(";"):
    print(item.split("="))


['Name1', 'Value1']
['Name2', 'Value2']
['Name3', 'Value3']

In [13]:
s= "pressure_0.5_rg_0.2_mem_1_"
dict(item.split("=") for item in s.split(";"))


---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-13-5a4b2ef3b604> in <module>()
      1 s= "pressure_0.5_rg_0.2_mem_1_"
----> 2 dict(item.split("=") for item in s.split(";"))

ValueError: dictionary update sequence element #0 has length 1; 2 is required

In [5]:
location = "/Users/weilu/Research/server/nov_2017/27nov/no_side_contraint_memb_3_rg_manual_lipid_0.6_extended/add_small_force/0/"
wham_file = location + "wham.0.dat"
wham = pd.read_csv(wham_file)
wham.columns = wham.columns.str.strip()


---------------------------------------------------------------------------
FileNotFoundError                         Traceback (most recent call last)
<ipython-input-5-597c6fdb89b7> in <module>()
      1 location = "/Users/weilu/Research/server/nov_2017/27nov/no_side_contraint_memb_3_rg_manual_lipid_0.6_extended/add_small_force/0/"
      2 wham_file = location + "wham.0.dat"
----> 3 wham = pd.read_csv(wham_file)
      4 wham.columns = wham.columns.str.strip()

~/anaconda3/lib/python3.6/site-packages/pandas/io/parsers.py in parser_f(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, escapechar, comment, encoding, dialect, tupleize_cols, error_bad_lines, warn_bad_lines, skipfooter, skip_footer, doublequote, delim_whitespace, as_recarray, compact_ints, use_unsigned, low_memory, buffer_lines, memory_map, float_precision)
    653                     skip_blank_lines=skip_blank_lines)
    654 
--> 655         return _read(filepath_or_buffer, kwds)
    656 
    657     parser_f.__name__ = name

~/anaconda3/lib/python3.6/site-packages/pandas/io/parsers.py in _read(filepath_or_buffer, kwds)
    403 
    404     # Create the parser.
--> 405     parser = TextFileReader(filepath_or_buffer, **kwds)
    406 
    407     if chunksize or iterator:

~/anaconda3/lib/python3.6/site-packages/pandas/io/parsers.py in __init__(self, f, engine, **kwds)
    762             self.options['has_index_names'] = kwds['has_index_names']
    763 
--> 764         self._make_engine(self.engine)
    765 
    766     def close(self):

~/anaconda3/lib/python3.6/site-packages/pandas/io/parsers.py in _make_engine(self, engine)
    983     def _make_engine(self, engine='c'):
    984         if engine == 'c':
--> 985             self._engine = CParserWrapper(self.f, **self.options)
    986         else:
    987             if engine == 'python':

~/anaconda3/lib/python3.6/site-packages/pandas/io/parsers.py in __init__(self, src, **kwds)
   1603         kwds['allow_leading_cols'] = self.index_col is not False
   1604 
-> 1605         self._reader = parsers.TextReader(src, **kwds)
   1606 
   1607         # XXX

pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader.__cinit__ (pandas/_libs/parsers.c:4209)()

pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._setup_parser_source (pandas/_libs/parsers.c:8873)()

FileNotFoundError: File b'/Users/weilu/Research/server/nov_2017/27nov/no_side_contraint_memb_3_rg_manual_lipid_0.6_extended/add_small_force/0/wham.0.dat' does not exist

In [ ]:
wham.Qw.hist(bins=200)

In [48]:
location = "/Users/weilu/Research/davinci/nov_2017/27nov/dec02_no_side_2/no_side_contraint_memb_3_rg_0.4_lipid_0.6_extended_350-550/2d_qw_dis/force_0.0/"
filename = location + "pmf-400.dat"
x = 1
y = 2
z = 3
xmin, xmax = 0, 1
ymin, ymax = 0, 150
zmin, zmax = 0, 30
xlabel, ylabel = "xlabel", "ylabel"
title = "title"
titlefontsize = 28

data = np.loadtxt(filename)
data = data[~np.isnan(data).any(axis=1)] # remove rows with nan
data = data[~(data[:,z] > zmax)] # remove rows of data for z not in [zmin zmax]
data = data[~(data[:,z] < zmin)]

xi = np.linspace(min(data[:,x]), max(data[:,x]), 20)
yi = np.linspace(min(data[:,y]), max(data[:,y]), 20)
zi = griddata((data[:,x], data[:,y]), data[:,z], (xi[None,:], yi[:,None]), method='linear')
# plt.contour(xi, yi, zi, 50, linewidths=0.25,colors='k')
jet = cm = plt.get_cmap('jet')
print(jet)
# plt.contourf(xi, yi, zi, 20, cmap='rainbow')
plt.figure()
plt.contourf(xi, yi, zi, 30, cmap='jet')
plt.xlim(xmin, xmax)
plt.clim(zmin, zmax)
plt.colorbar()

plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.title(title, y=1.02, fontsize = titlefontsize)
#plt.tight_layout()
#plt.axis('equal')
#plt.axes().set_aspect('equal')
#plt.axes().set_aspect('scaled')
# plt.savefig(args.outname, dpi=args.dpi, bbox_inches='tight')
plt.show()


<matplotlib.colors.LinearSegmentedColormap object at 0x109aeb4a8>

In [56]:
file = "wham.0.dat"
b = pd.read_csv(location+file)

In [63]:
location = "/Users/weilu/Research/server/nov_2017/13nov/no_side_contraint_memb_3_rg_0.4_lipid_0.6_extended/simulation/dis_100.0/0/"
qc = pd.read_table(location+f"qc_{i}", names=["qc"])[1:].reset_index(drop=True)
qn = pd.read_table(location+f"qn_{i}", names=["qn"])[1:].reset_index(drop=True)
qc2 = pd.read_table(location+f"qc2_{i}", names=["qc2"])[1:].reset_index(drop=True)

In [65]:
pd.concat([a,b],axis=1)


Out[65]:
qc Steps Qw Rg Tc Energy
0 0.098 4000 0.052376 96.576704 119 -230.463252
1 0.128 8000 0.062897 81.994732 121 -385.307319
2 0.166 12000 0.080449 69.938002 146 -465.731833
3 0.215 16000 0.104170 61.379717 151 -567.267901
4 0.221 20000 0.112049 56.330383 158 -601.194773
5 0.217 24000 0.113051 53.002372 152 -635.965014
6 0.219 28000 0.116622 51.394586 172 -690.651929
7 0.219 32000 0.119104 50.629356 169 -739.482429
8 0.213 36000 0.120307 50.940639 180 -777.368209
9 0.191 40000 0.118846 51.073804 170 -761.275873
10 0.190 44000 0.119369 49.965367 183 -757.431209
11 0.166 48000 0.110520 48.361202 181 -751.630463
12 0.172 52000 0.122541 46.040062 170 -737.560826
13 0.173 56000 0.113668 47.257738 173 -759.609979
14 0.198 60000 0.117068 47.240625 175 -740.406865
15 0.195 64000 0.110576 46.204786 163 -717.441438
16 0.203 68000 0.115101 46.668260 179 -688.299915
17 0.191 72000 0.117031 48.758690 178 -745.644330
18 0.180 76000 0.110990 50.058975 165 -776.474004
19 0.186 80000 0.102668 51.059310 170 -760.609357
20 0.204 84000 0.104236 50.689380 169 -726.023426
21 0.214 88000 0.119053 50.613297 180 -773.729312
22 0.209 92000 0.117483 49.373045 186 -786.775855
23 0.213 96000 0.116580 47.500473 167 -779.278770
24 0.194 100000 0.115479 45.500001 186 -763.188031
25 0.213 104000 0.109816 45.206320 167 -728.822255
26 0.187 108000 0.104053 45.202317 175 -722.587848
27 0.195 112000 0.108193 46.158852 182 -757.141725
28 0.202 116000 0.110481 47.102658 182 -713.114251
29 0.187 120000 0.110571 48.476007 179 -729.045676
... ... ... ... ... ... ...
4970 0.171 19884000 0.097729 43.833905 173 -411.508176
4971 0.171 19888000 0.101152 43.470590 167 -482.884087
4972 0.172 19892000 0.101059 42.189817 170 -479.982867
4973 0.182 19896000 0.100380 42.111450 151 -516.401361
4974 0.181 19900000 0.099469 40.960447 152 -455.042625
4975 0.169 19904000 0.100541 40.141068 149 -418.105405
4976 0.213 19908000 0.121238 39.318029 146 -404.577324
4977 0.161 19912000 0.098544 40.570618 163 -377.262558
4978 0.172 19916000 0.109954 43.024622 153 -436.428223
4979 0.165 19920000 0.098173 44.948550 160 -420.777441
4980 0.150 19924000 0.088031 47.127699 147 -399.119101
4981 0.177 19928000 0.108686 47.413757 177 -372.121535
4982 0.173 19932000 0.105737 47.969942 160 -369.460824
4983 0.151 19936000 0.095681 49.114456 165 -374.463392
4984 0.157 19940000 0.092545 50.497218 148 -385.387739
4985 0.182 19944000 0.101468 51.640140 153 -353.549776
4986 0.163 19948000 0.087176 53.255145 136 -372.979038
4987 0.161 19952000 0.086903 53.126812 140 -366.397326
4988 0.162 19956000 0.093185 52.912253 158 -350.071426
4989 0.123 19960000 0.073190 51.105345 136 -308.056577
4990 0.162 19964000 0.096270 49.243858 146 -263.716826
4991 0.150 19968000 0.095351 49.727551 148 -379.479529
4992 0.138 19972000 0.086461 50.262002 163 -290.552138
4993 0.159 19976000 0.092115 51.403897 154 -370.611215
4994 0.170 19980000 0.107046 51.318839 145 -332.800215
4995 0.166 19984000 0.091027 49.958547 147 -388.405190
4996 0.167 19988000 0.103496 48.483778 166 -299.223032
4997 0.187 19992000 0.098928 47.384029 155 -320.327021
4998 0.201 19996000 0.106586 47.129446 174 -384.791210
4999 0.199 20000000 0.109796 47.362726 149 -316.884116

5000 rows × 6 columns


In [71]:
location = "/Users/weilu/Research/davinci/dec_2017/all_data_folder/no_side_contraint_memb_3_rg_0.4_lipid_0.6_extended/"
a = pd.read_feather(location+"dis100.0.feather")

In [78]:
a["Qn"] = a["qn"]
a["Qc"] = a["qc"]
a["Qc2"] = a["qc2"]
a.drop(["qc","qn","qc2"], axis=1)


Out[78]:
index Step Run Temp Qw Energy Distance Lipid AMH-Go Membrane Rg TotalE Qc Qn Qc2
0 0 4000 0 T1 0.052376 -230.463252 260.697458 0.002846 -320.672985 -89.808640 20.289161 -230.460406 0.098 0.111 0.183
1 11 4000 8 T8 0.048493 44.765478 261.934545 0.039555 -273.643131 -94.959967 17.988436 44.805033 0.095 0.089 0.195
2 10 4000 7 T7 0.046195 99.783921 264.293987 0.020403 -269.317465 -98.032087 19.582566 99.804323 0.080 0.110 0.153
3 9 4000 3 T2 0.050422 -178.276749 259.472901 0.017870 -315.660777 -91.853011 15.716146 -178.258879 0.096 0.103 0.151
4 7 4000 2 T3 0.049041 -226.827483 266.022021 0.012576 -312.740668 -82.659715 13.856081 -226.814907 0.092 0.105 0.163
5 6 4000 6 T6 0.045750 11.781813 261.725221 0.024576 -287.356174 -87.152555 18.375624 11.806389 0.089 0.083 0.154
6 8 4000 10 T10 0.043264 285.365172 255.945450 0.015740 -242.037148 -100.941627 18.171787 285.380913 0.076 0.090 0.132
7 4 4000 5 T4 0.049164 -58.635146 261.994426 0.025020 -297.591449 -89.152319 21.201030 -58.610126 0.095 0.101 0.157
8 3 4000 9 T9 0.043879 173.111882 261.513616 0.032071 -263.504692 -95.854355 16.238814 173.143953 0.083 0.087 0.157
9 2 4000 1 T0 0.054363 -263.514703 261.605500 0.017367 -330.549656 -84.522104 12.297805 -263.497336 0.106 0.117 0.188
10 1 4000 11 T11 0.041352 380.616112 261.189069 0.019877 -246.831226 -94.003974 18.393798 380.635990 0.070 0.091 0.142
11 5 4000 4 T5 0.048073 -63.216458 264.321184 0.020545 -270.463340 -95.216605 14.883018 -63.195913 0.088 0.091 0.151
12 19 8000 3 T2 0.066254 -304.207262 186.115709 -0.074887 -331.555813 -84.996525 16.198299 -304.282149 0.116 0.156 0.233
13 23 8000 10 T10 0.045864 520.736957 179.061840 -0.057289 -224.424677 -72.102860 16.570245 520.679668 0.072 0.125 0.173
14 22 8000 9 T9 0.047327 360.827640 183.433458 -0.132879 -226.418196 -88.302150 15.720267 360.694761 0.075 0.128 0.209
15 21 8000 1 T0 0.062929 -488.576897 179.813131 -0.048813 -344.865534 -97.502099 25.789635 -488.625710 0.121 0.134 0.271
16 20 8000 7 T7 0.048678 208.057397 185.144411 -0.035643 -247.891787 -76.544446 15.752432 208.021754 0.073 0.138 0.147
17 18 8000 0 T1 0.062897 -385.307319 183.221037 -0.060766 -332.328076 -74.153887 22.604000 -385.368085 0.128 0.120 0.284
18 14 8000 6 T6 0.053647 94.858713 176.747966 -0.049707 -264.099856 -84.021040 14.497136 94.809006 0.090 0.137 0.214
19 16 8000 2 T3 0.058599 -257.270212 174.782471 -0.040857 -305.804757 -92.353686 21.074975 -257.311069 0.114 0.124 0.254
20 15 8000 8 T8 0.057165 221.393454 184.190539 -0.077251 -264.664221 -71.171399 16.404226 221.316202 0.105 0.129 0.284
21 13 8000 4 T5 0.059378 -77.052160 180.198201 -0.037302 -292.220362 -104.475042 26.400950 -77.089462 0.109 0.127 0.281
22 12 8000 5 T4 0.062652 -171.270179 185.870155 -0.028807 -305.948545 -76.968147 19.193998 -171.298986 0.111 0.146 0.231
23 17 8000 11 T11 0.046189 565.799119 174.046677 -0.069297 -200.366905 -88.077859 19.292606 565.729823 0.072 0.124 0.178
24 31 12000 8 T8 0.070688 172.832283 149.169041 -0.000171 -298.488788 -67.849840 11.055367 172.832113 0.118 0.180 0.274
25 35 12000 5 T4 0.087784 -273.605722 137.396714 -0.198979 -347.343224 -76.396274 13.140369 -273.804701 0.162 0.197 0.369
26 34 12000 0 T1 0.080449 -465.731833 138.952859 -0.002480 -377.215010 -67.103867 6.751241 -465.734313 0.166 0.159 0.364
27 33 12000 9 T9 0.067116 244.033512 138.680989 -0.026250 -241.170700 -87.307708 13.927827 244.007262 0.104 0.183 0.262
28 32 12000 7 T6 0.070652 105.469216 142.023264 -0.035487 -275.133562 -76.411618 10.879675 105.433729 0.120 0.174 0.265
29 30 12000 6 T7 0.063491 140.963431 131.112888 0.003554 -262.999687 -84.602052 13.331547 140.966985 0.119 0.144 0.221
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
119970 59968 39992000 10 T8 0.084644 125.225000 103.789374 0.090318 -321.185686 -125.695527 14.684923 125.315318 0.143 0.193 0.236
119971 59967 39992000 5 T1 0.349991 -875.756422 95.257083 -2.509045 -532.261303 -112.158109 17.440344 -878.265467 0.601 0.241 0.490
119972 59966 39992000 11 T9 0.090627 266.004836 89.849633 -3.504245 -254.283771 -133.853171 19.380148 262.500590 0.109 0.260 0.155
119973 59965 39992000 8 T3 0.152857 -660.319708 100.758117 -6.206477 -453.784150 -134.328173 12.607433 -666.526186 0.200 0.459 0.343
119974 59964 39992000 7 T0 0.169079 -912.040151 90.305251 -5.906491 -494.024593 -133.217904 13.670734 -917.946641 0.200 0.483 0.341
119975 59969 39992000 4 T4 0.114089 -444.277900 95.660271 -5.314091 -398.246881 -128.057087 9.608467 -449.591990 0.152 0.343 0.277
119976 59987 39996000 11 T9 0.074017 382.517185 91.639465 -4.724942 -228.640940 -133.677532 24.182730 377.792244 0.080 0.209 0.105
119977 59986 39996000 10 T8 0.063696 208.152815 100.148774 0.285182 -298.037024 -119.461887 15.373861 208.437997 0.126 0.108 0.208
119978 59985 39996000 0 T5 0.136838 -416.291851 96.437949 -4.623812 -453.438025 -109.864277 11.485843 -420.915663 0.174 0.400 0.305
119979 59983 39996000 3 T11 0.054917 756.580771 105.894603 -0.012843 -156.503404 -104.933674 15.775930 756.567928 0.093 0.122 0.122
119980 59982 39996000 6 T7 0.089424 122.986885 98.720483 -4.239269 -258.873243 -119.852487 15.178919 118.747616 0.116 0.217 0.164
119981 59984 39996000 5 T1 0.339551 -866.955251 96.224059 -3.020632 -534.135828 -112.357492 19.734441 -869.975883 0.614 0.215 0.505
119982 59980 39996000 7 T0 0.173838 -911.803888 92.408859 -6.877245 -502.691375 -132.888972 10.307421 -918.681134 0.222 0.462 0.367
119983 59979 39996000 1 T10 0.067316 404.458095 108.594429 0.375098 -222.586328 -122.517378 18.134658 404.833192 0.115 0.133 0.201
119984 59978 39996000 4 T4 0.121727 -505.135216 92.309613 -6.207101 -430.397193 -117.058347 10.813826 -511.342317 0.158 0.363 0.245
119985 59977 39996000 9 T2 0.156603 -660.139866 91.639243 -5.771314 -462.484791 -127.278876 10.799616 -665.911180 0.188 0.445 0.310
119986 59976 39996000 2 T6 0.090403 -108.878215 100.868756 -0.996695 -341.361686 -132.524702 11.953597 -109.874911 0.124 0.254 0.196
119987 59981 39996000 8 T3 0.159727 -644.308395 95.710298 -5.163244 -463.921253 -119.318109 12.246137 -649.471639 0.210 0.479 0.336
119988 59997 40000000 6 T7 0.121694 90.775558 97.820644 -6.382994 -296.725515 -146.721218 17.309919 84.392564 0.115 0.345 0.209
119989 59996 40000000 0 T5 0.117225 -398.106095 85.880769 -4.712317 -426.357958 -115.108330 11.240729 -402.818412 0.162 0.329 0.336
119990 59995 40000000 1 T10 0.064563 589.132379 98.088798 0.346817 -192.860089 -125.752621 19.455592 589.479197 0.110 0.137 0.180
119991 59994 40000000 3 T11 0.051702 906.766668 90.108483 -0.005943 -158.550245 -110.137634 17.307949 906.760725 0.114 0.075 0.198
119992 59993 40000000 2 T6 0.098242 -88.301639 92.525162 -1.773163 -348.588410 -119.259256 15.222263 -90.074802 0.143 0.266 0.215
119993 59990 40000000 9 T2 0.133199 -694.262202 86.425812 -6.205387 -472.458712 -132.501237 9.422770 -700.467590 0.181 0.350 0.322
119994 59991 40000000 7 T0 0.161546 -943.628702 92.865545 -5.851144 -492.677367 -137.029432 13.563649 -949.479846 0.200 0.446 0.359
119995 59989 40000000 5 T1 0.315990 -853.838423 100.449897 -2.131402 -532.164620 -110.294998 15.498966 -855.969825 0.560 0.215 0.543
119996 59988 40000000 10 T8 0.061048 199.429269 105.126176 0.711126 -271.350388 -117.233767 22.564685 200.140395 0.115 0.114 0.205
119997 59998 40000000 4 T4 0.123769 -510.229033 98.082233 -6.345745 -401.651487 -127.400773 11.718531 -516.574778 0.156 0.390 0.294
119998 59992 40000000 8 T3 0.141706 -580.866390 90.356360 -5.740184 -445.591781 -128.659888 11.442731 -586.606573 0.199 0.404 0.333
119999 59999 40000000 11 T9 0.076814 318.402317 90.884389 -5.038724 -239.043224 -132.436665 14.233994 313.363593 0.106 0.185 0.187

120000 rows × 15 columns


In [73]:
a.set_index('TotalE').reset_index()


Out[73]:
TotalE index Step Run Temp Qw Energy qn qc qc2 Distance Lipid AMH-Go Membrane Rg
0 -230.460406 0 4000 0 T1 0.052376 -230.463252 0.111 0.098 0.183 260.697458 0.002846 -320.672985 -89.808640 20.289161
1 44.805033 11 4000 8 T8 0.048493 44.765478 0.089 0.095 0.195 261.934545 0.039555 -273.643131 -94.959967 17.988436
2 99.804323 10 4000 7 T7 0.046195 99.783921 0.110 0.080 0.153 264.293987 0.020403 -269.317465 -98.032087 19.582566
3 -178.258879 9 4000 3 T2 0.050422 -178.276749 0.103 0.096 0.151 259.472901 0.017870 -315.660777 -91.853011 15.716146
4 -226.814907 7 4000 2 T3 0.049041 -226.827483 0.105 0.092 0.163 266.022021 0.012576 -312.740668 -82.659715 13.856081
5 11.806389 6 4000 6 T6 0.045750 11.781813 0.083 0.089 0.154 261.725221 0.024576 -287.356174 -87.152555 18.375624
6 285.380913 8 4000 10 T10 0.043264 285.365172 0.090 0.076 0.132 255.945450 0.015740 -242.037148 -100.941627 18.171787
7 -58.610126 4 4000 5 T4 0.049164 -58.635146 0.101 0.095 0.157 261.994426 0.025020 -297.591449 -89.152319 21.201030
8 173.143953 3 4000 9 T9 0.043879 173.111882 0.087 0.083 0.157 261.513616 0.032071 -263.504692 -95.854355 16.238814
9 -263.497336 2 4000 1 T0 0.054363 -263.514703 0.117 0.106 0.188 261.605500 0.017367 -330.549656 -84.522104 12.297805
10 380.635990 1 4000 11 T11 0.041352 380.616112 0.091 0.070 0.142 261.189069 0.019877 -246.831226 -94.003974 18.393798
11 -63.195913 5 4000 4 T5 0.048073 -63.216458 0.091 0.088 0.151 264.321184 0.020545 -270.463340 -95.216605 14.883018
12 -304.282149 19 8000 3 T2 0.066254 -304.207262 0.156 0.116 0.233 186.115709 -0.074887 -331.555813 -84.996525 16.198299
13 520.679668 23 8000 10 T10 0.045864 520.736957 0.125 0.072 0.173 179.061840 -0.057289 -224.424677 -72.102860 16.570245
14 360.694761 22 8000 9 T9 0.047327 360.827640 0.128 0.075 0.209 183.433458 -0.132879 -226.418196 -88.302150 15.720267
15 -488.625710 21 8000 1 T0 0.062929 -488.576897 0.134 0.121 0.271 179.813131 -0.048813 -344.865534 -97.502099 25.789635
16 208.021754 20 8000 7 T7 0.048678 208.057397 0.138 0.073 0.147 185.144411 -0.035643 -247.891787 -76.544446 15.752432
17 -385.368085 18 8000 0 T1 0.062897 -385.307319 0.120 0.128 0.284 183.221037 -0.060766 -332.328076 -74.153887 22.604000
18 94.809006 14 8000 6 T6 0.053647 94.858713 0.137 0.090 0.214 176.747966 -0.049707 -264.099856 -84.021040 14.497136
19 -257.311069 16 8000 2 T3 0.058599 -257.270212 0.124 0.114 0.254 174.782471 -0.040857 -305.804757 -92.353686 21.074975
20 221.316202 15 8000 8 T8 0.057165 221.393454 0.129 0.105 0.284 184.190539 -0.077251 -264.664221 -71.171399 16.404226
21 -77.089462 13 8000 4 T5 0.059378 -77.052160 0.127 0.109 0.281 180.198201 -0.037302 -292.220362 -104.475042 26.400950
22 -171.298986 12 8000 5 T4 0.062652 -171.270179 0.146 0.111 0.231 185.870155 -0.028807 -305.948545 -76.968147 19.193998
23 565.729823 17 8000 11 T11 0.046189 565.799119 0.124 0.072 0.178 174.046677 -0.069297 -200.366905 -88.077859 19.292606
24 172.832113 31 12000 8 T8 0.070688 172.832283 0.180 0.118 0.274 149.169041 -0.000171 -298.488788 -67.849840 11.055367
25 -273.804701 35 12000 5 T4 0.087784 -273.605722 0.197 0.162 0.369 137.396714 -0.198979 -347.343224 -76.396274 13.140369
26 -465.734313 34 12000 0 T1 0.080449 -465.731833 0.159 0.166 0.364 138.952859 -0.002480 -377.215010 -67.103867 6.751241
27 244.007262 33 12000 9 T9 0.067116 244.033512 0.183 0.104 0.262 138.680989 -0.026250 -241.170700 -87.307708 13.927827
28 105.433729 32 12000 7 T6 0.070652 105.469216 0.174 0.120 0.265 142.023264 -0.035487 -275.133562 -76.411618 10.879675
29 140.966985 30 12000 6 T7 0.063491 140.963431 0.144 0.119 0.221 131.112888 0.003554 -262.999687 -84.602052 13.331547
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
119970 125.315318 59968 39992000 10 T8 0.084644 125.225000 0.193 0.143 0.236 103.789374 0.090318 -321.185686 -125.695527 14.684923
119971 -878.265467 59967 39992000 5 T1 0.349991 -875.756422 0.241 0.601 0.490 95.257083 -2.509045 -532.261303 -112.158109 17.440344
119972 262.500590 59966 39992000 11 T9 0.090627 266.004836 0.260 0.109 0.155 89.849633 -3.504245 -254.283771 -133.853171 19.380148
119973 -666.526186 59965 39992000 8 T3 0.152857 -660.319708 0.459 0.200 0.343 100.758117 -6.206477 -453.784150 -134.328173 12.607433
119974 -917.946641 59964 39992000 7 T0 0.169079 -912.040151 0.483 0.200 0.341 90.305251 -5.906491 -494.024593 -133.217904 13.670734
119975 -449.591990 59969 39992000 4 T4 0.114089 -444.277900 0.343 0.152 0.277 95.660271 -5.314091 -398.246881 -128.057087 9.608467
119976 377.792244 59987 39996000 11 T9 0.074017 382.517185 0.209 0.080 0.105 91.639465 -4.724942 -228.640940 -133.677532 24.182730
119977 208.437997 59986 39996000 10 T8 0.063696 208.152815 0.108 0.126 0.208 100.148774 0.285182 -298.037024 -119.461887 15.373861
119978 -420.915663 59985 39996000 0 T5 0.136838 -416.291851 0.400 0.174 0.305 96.437949 -4.623812 -453.438025 -109.864277 11.485843
119979 756.567928 59983 39996000 3 T11 0.054917 756.580771 0.122 0.093 0.122 105.894603 -0.012843 -156.503404 -104.933674 15.775930
119980 118.747616 59982 39996000 6 T7 0.089424 122.986885 0.217 0.116 0.164 98.720483 -4.239269 -258.873243 -119.852487 15.178919
119981 -869.975883 59984 39996000 5 T1 0.339551 -866.955251 0.215 0.614 0.505 96.224059 -3.020632 -534.135828 -112.357492 19.734441
119982 -918.681134 59980 39996000 7 T0 0.173838 -911.803888 0.462 0.222 0.367 92.408859 -6.877245 -502.691375 -132.888972 10.307421
119983 404.833192 59979 39996000 1 T10 0.067316 404.458095 0.133 0.115 0.201 108.594429 0.375098 -222.586328 -122.517378 18.134658
119984 -511.342317 59978 39996000 4 T4 0.121727 -505.135216 0.363 0.158 0.245 92.309613 -6.207101 -430.397193 -117.058347 10.813826
119985 -665.911180 59977 39996000 9 T2 0.156603 -660.139866 0.445 0.188 0.310 91.639243 -5.771314 -462.484791 -127.278876 10.799616
119986 -109.874911 59976 39996000 2 T6 0.090403 -108.878215 0.254 0.124 0.196 100.868756 -0.996695 -341.361686 -132.524702 11.953597
119987 -649.471639 59981 39996000 8 T3 0.159727 -644.308395 0.479 0.210 0.336 95.710298 -5.163244 -463.921253 -119.318109 12.246137
119988 84.392564 59997 40000000 6 T7 0.121694 90.775558 0.345 0.115 0.209 97.820644 -6.382994 -296.725515 -146.721218 17.309919
119989 -402.818412 59996 40000000 0 T5 0.117225 -398.106095 0.329 0.162 0.336 85.880769 -4.712317 -426.357958 -115.108330 11.240729
119990 589.479197 59995 40000000 1 T10 0.064563 589.132379 0.137 0.110 0.180 98.088798 0.346817 -192.860089 -125.752621 19.455592
119991 906.760725 59994 40000000 3 T11 0.051702 906.766668 0.075 0.114 0.198 90.108483 -0.005943 -158.550245 -110.137634 17.307949
119992 -90.074802 59993 40000000 2 T6 0.098242 -88.301639 0.266 0.143 0.215 92.525162 -1.773163 -348.588410 -119.259256 15.222263
119993 -700.467590 59990 40000000 9 T2 0.133199 -694.262202 0.350 0.181 0.322 86.425812 -6.205387 -472.458712 -132.501237 9.422770
119994 -949.479846 59991 40000000 7 T0 0.161546 -943.628702 0.446 0.200 0.359 92.865545 -5.851144 -492.677367 -137.029432 13.563649
119995 -855.969825 59989 40000000 5 T1 0.315990 -853.838423 0.215 0.560 0.543 100.449897 -2.131402 -532.164620 -110.294998 15.498966
119996 200.140395 59988 40000000 10 T8 0.061048 199.429269 0.114 0.115 0.205 105.126176 0.711126 -271.350388 -117.233767 22.564685
119997 -516.574778 59998 40000000 4 T4 0.123769 -510.229033 0.390 0.156 0.294 98.082233 -6.345745 -401.651487 -127.400773 11.718531
119998 -586.606573 59992 40000000 8 T3 0.141706 -580.866390 0.404 0.199 0.333 90.356360 -5.740184 -445.591781 -128.659888 11.442731
119999 313.363593 59999 40000000 11 T9 0.076814 318.402317 0.185 0.106 0.187 90.884389 -5.038724 -239.043224 -132.436665 14.233994

120000 rows × 15 columns


In [69]:
a["Energy"],a["TotalE"] = a["TotalE"], a["Energy"]

In [70]:
a


Out[70]:
index Step Run Temp Qw Energy qn qc qc2 Distance Lipid AMH-Go Membrane Rg TotalE
0 0 4000 0 T1 0.052376 -230.460406 0.111 0.098 0.183 260.697458 0.002846 -320.672985 -89.808640 20.289161 -230.460406
1 11 4000 8 T8 0.048493 44.805033 0.089 0.095 0.195 261.934545 0.039555 -273.643131 -94.959967 17.988436 44.805033
2 10 4000 7 T7 0.046195 99.804323 0.110 0.080 0.153 264.293987 0.020403 -269.317465 -98.032087 19.582566 99.804323
3 9 4000 3 T2 0.050422 -178.258879 0.103 0.096 0.151 259.472901 0.017870 -315.660777 -91.853011 15.716146 -178.258879
4 7 4000 2 T3 0.049041 -226.814907 0.105 0.092 0.163 266.022021 0.012576 -312.740668 -82.659715 13.856081 -226.814907
5 6 4000 6 T6 0.045750 11.806389 0.083 0.089 0.154 261.725221 0.024576 -287.356174 -87.152555 18.375624 11.806389
6 8 4000 10 T10 0.043264 285.380913 0.090 0.076 0.132 255.945450 0.015740 -242.037148 -100.941627 18.171787 285.380913
7 4 4000 5 T4 0.049164 -58.610126 0.101 0.095 0.157 261.994426 0.025020 -297.591449 -89.152319 21.201030 -58.610126
8 3 4000 9 T9 0.043879 173.143953 0.087 0.083 0.157 261.513616 0.032071 -263.504692 -95.854355 16.238814 173.143953
9 2 4000 1 T0 0.054363 -263.497336 0.117 0.106 0.188 261.605500 0.017367 -330.549656 -84.522104 12.297805 -263.497336
10 1 4000 11 T11 0.041352 380.635990 0.091 0.070 0.142 261.189069 0.019877 -246.831226 -94.003974 18.393798 380.635990
11 5 4000 4 T5 0.048073 -63.195913 0.091 0.088 0.151 264.321184 0.020545 -270.463340 -95.216605 14.883018 -63.195913
12 19 8000 3 T2 0.066254 -304.282149 0.156 0.116 0.233 186.115709 -0.074887 -331.555813 -84.996525 16.198299 -304.282149
13 23 8000 10 T10 0.045864 520.679668 0.125 0.072 0.173 179.061840 -0.057289 -224.424677 -72.102860 16.570245 520.679668
14 22 8000 9 T9 0.047327 360.694761 0.128 0.075 0.209 183.433458 -0.132879 -226.418196 -88.302150 15.720267 360.694761
15 21 8000 1 T0 0.062929 -488.625710 0.134 0.121 0.271 179.813131 -0.048813 -344.865534 -97.502099 25.789635 -488.625710
16 20 8000 7 T7 0.048678 208.021754 0.138 0.073 0.147 185.144411 -0.035643 -247.891787 -76.544446 15.752432 208.021754
17 18 8000 0 T1 0.062897 -385.368085 0.120 0.128 0.284 183.221037 -0.060766 -332.328076 -74.153887 22.604000 -385.368085
18 14 8000 6 T6 0.053647 94.809006 0.137 0.090 0.214 176.747966 -0.049707 -264.099856 -84.021040 14.497136 94.809006
19 16 8000 2 T3 0.058599 -257.311069 0.124 0.114 0.254 174.782471 -0.040857 -305.804757 -92.353686 21.074975 -257.311069
20 15 8000 8 T8 0.057165 221.316202 0.129 0.105 0.284 184.190539 -0.077251 -264.664221 -71.171399 16.404226 221.316202
21 13 8000 4 T5 0.059378 -77.089462 0.127 0.109 0.281 180.198201 -0.037302 -292.220362 -104.475042 26.400950 -77.089462
22 12 8000 5 T4 0.062652 -171.298986 0.146 0.111 0.231 185.870155 -0.028807 -305.948545 -76.968147 19.193998 -171.298986
23 17 8000 11 T11 0.046189 565.729823 0.124 0.072 0.178 174.046677 -0.069297 -200.366905 -88.077859 19.292606 565.729823
24 31 12000 8 T8 0.070688 172.832113 0.180 0.118 0.274 149.169041 -0.000171 -298.488788 -67.849840 11.055367 172.832113
25 35 12000 5 T4 0.087784 -273.804701 0.197 0.162 0.369 137.396714 -0.198979 -347.343224 -76.396274 13.140369 -273.804701
26 34 12000 0 T1 0.080449 -465.734313 0.159 0.166 0.364 138.952859 -0.002480 -377.215010 -67.103867 6.751241 -465.734313
27 33 12000 9 T9 0.067116 244.007262 0.183 0.104 0.262 138.680989 -0.026250 -241.170700 -87.307708 13.927827 244.007262
28 32 12000 7 T6 0.070652 105.433729 0.174 0.120 0.265 142.023264 -0.035487 -275.133562 -76.411618 10.879675 105.433729
29 30 12000 6 T7 0.063491 140.966985 0.144 0.119 0.221 131.112888 0.003554 -262.999687 -84.602052 13.331547 140.966985
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
119970 59968 39992000 10 T8 0.084644 125.315318 0.193 0.143 0.236 103.789374 0.090318 -321.185686 -125.695527 14.684923 125.315318
119971 59967 39992000 5 T1 0.349991 -878.265467 0.241 0.601 0.490 95.257083 -2.509045 -532.261303 -112.158109 17.440344 -878.265467
119972 59966 39992000 11 T9 0.090627 262.500590 0.260 0.109 0.155 89.849633 -3.504245 -254.283771 -133.853171 19.380148 262.500590
119973 59965 39992000 8 T3 0.152857 -666.526186 0.459 0.200 0.343 100.758117 -6.206477 -453.784150 -134.328173 12.607433 -666.526186
119974 59964 39992000 7 T0 0.169079 -917.946641 0.483 0.200 0.341 90.305251 -5.906491 -494.024593 -133.217904 13.670734 -917.946641
119975 59969 39992000 4 T4 0.114089 -449.591990 0.343 0.152 0.277 95.660271 -5.314091 -398.246881 -128.057087 9.608467 -449.591990
119976 59987 39996000 11 T9 0.074017 377.792244 0.209 0.080 0.105 91.639465 -4.724942 -228.640940 -133.677532 24.182730 377.792244
119977 59986 39996000 10 T8 0.063696 208.437997 0.108 0.126 0.208 100.148774 0.285182 -298.037024 -119.461887 15.373861 208.437997
119978 59985 39996000 0 T5 0.136838 -420.915663 0.400 0.174 0.305 96.437949 -4.623812 -453.438025 -109.864277 11.485843 -420.915663
119979 59983 39996000 3 T11 0.054917 756.567928 0.122 0.093 0.122 105.894603 -0.012843 -156.503404 -104.933674 15.775930 756.567928
119980 59982 39996000 6 T7 0.089424 118.747616 0.217 0.116 0.164 98.720483 -4.239269 -258.873243 -119.852487 15.178919 118.747616
119981 59984 39996000 5 T1 0.339551 -869.975883 0.215 0.614 0.505 96.224059 -3.020632 -534.135828 -112.357492 19.734441 -869.975883
119982 59980 39996000 7 T0 0.173838 -918.681134 0.462 0.222 0.367 92.408859 -6.877245 -502.691375 -132.888972 10.307421 -918.681134
119983 59979 39996000 1 T10 0.067316 404.833192 0.133 0.115 0.201 108.594429 0.375098 -222.586328 -122.517378 18.134658 404.833192
119984 59978 39996000 4 T4 0.121727 -511.342317 0.363 0.158 0.245 92.309613 -6.207101 -430.397193 -117.058347 10.813826 -511.342317
119985 59977 39996000 9 T2 0.156603 -665.911180 0.445 0.188 0.310 91.639243 -5.771314 -462.484791 -127.278876 10.799616 -665.911180
119986 59976 39996000 2 T6 0.090403 -109.874911 0.254 0.124 0.196 100.868756 -0.996695 -341.361686 -132.524702 11.953597 -109.874911
119987 59981 39996000 8 T3 0.159727 -649.471639 0.479 0.210 0.336 95.710298 -5.163244 -463.921253 -119.318109 12.246137 -649.471639
119988 59997 40000000 6 T7 0.121694 84.392564 0.345 0.115 0.209 97.820644 -6.382994 -296.725515 -146.721218 17.309919 84.392564
119989 59996 40000000 0 T5 0.117225 -402.818412 0.329 0.162 0.336 85.880769 -4.712317 -426.357958 -115.108330 11.240729 -402.818412
119990 59995 40000000 1 T10 0.064563 589.479197 0.137 0.110 0.180 98.088798 0.346817 -192.860089 -125.752621 19.455592 589.479197
119991 59994 40000000 3 T11 0.051702 906.760725 0.075 0.114 0.198 90.108483 -0.005943 -158.550245 -110.137634 17.307949 906.760725
119992 59993 40000000 2 T6 0.098242 -90.074802 0.266 0.143 0.215 92.525162 -1.773163 -348.588410 -119.259256 15.222263 -90.074802
119993 59990 40000000 9 T2 0.133199 -700.467590 0.350 0.181 0.322 86.425812 -6.205387 -472.458712 -132.501237 9.422770 -700.467590
119994 59991 40000000 7 T0 0.161546 -949.479846 0.446 0.200 0.359 92.865545 -5.851144 -492.677367 -137.029432 13.563649 -949.479846
119995 59989 40000000 5 T1 0.315990 -855.969825 0.215 0.560 0.543 100.449897 -2.131402 -532.164620 -110.294998 15.498966 -855.969825
119996 59988 40000000 10 T8 0.061048 200.140395 0.114 0.115 0.205 105.126176 0.711126 -271.350388 -117.233767 22.564685 200.140395
119997 59998 40000000 4 T4 0.123769 -516.574778 0.390 0.156 0.294 98.082233 -6.345745 -401.651487 -127.400773 11.718531 -516.574778
119998 59992 40000000 8 T3 0.141706 -586.606573 0.404 0.199 0.333 90.356360 -5.740184 -445.591781 -128.659888 11.442731 -586.606573
119999 59999 40000000 11 T9 0.076814 313.363593 0.185 0.106 0.187 90.884389 -5.038724 -239.043224 -132.436665 14.233994 313.363593

120000 rows × 15 columns


In [37]:
data = pd.read_csv("/Users/weilu/Downloads/Default Dataset-2.csv", header=None, names=["x", "y"])
data


Out[37]:
x y
0 0.081951 -0.368112
1 0.099926 -0.449932
2 0.153837 -0.667842
3 0.197925 -0.803559
4 0.250138 -0.883806
5 0.294199 -0.964428
6 0.361059 -0.988906
7 0.426181 -0.793079
8 0.476669 -0.680568
9 0.515664 -0.403295
10 0.577377 0.095406
11 0.619538 0.565661
12 0.663208 1.283920
13 0.689039 1.808522
14 0.722886 2.608974
15 0.742289 2.940443
16 0.772809 3.878484
17 0.795270 4.623317
18 0.811305 5.175017
19 0.830533 5.864605
20 0.851351 6.636911

In [38]:
data = pd.read_csv("/Users/weilu/Downloads/Default Dataset-3.csv", header=None, names=["x", "y"])

In [39]:
data


Out[39]:
x y
0 0.042579 0.125948
1 0.078448 0.127595
2 0.106165 0.128867
3 0.156666 0.213831
4 0.184356 0.270198
5 0.220198 0.326940
6 0.259301 0.383832
7 0.291882 0.440425
8 0.316324 0.469095
9 0.355400 0.581082
10 0.381473 0.609827
11 0.422165 0.749437
12 0.467749 0.889271
13 0.518170 1.139520
14 0.545806 1.306078
15 0.579923 1.555578
16 0.614000 1.887721
17 0.665876 2.496164
18 0.686910 2.827708
19 0.720865 3.407779
20 0.762811 4.318796
21 0.788574 4.981136
22 0.812666 5.726044
23 0.831934 6.332989
24 0.847955 6.912237
25 0.862346 7.491410

In [40]:
x = data["x"].values

In [41]:
y = data["y"].values

In [42]:
order = 4
plt.figure()
p = np.poly1d(np.polyfit(x, y, order))
xp = np.linspace(0, 1, 1000)
_ = plt.plot(x, y, '.', xp, p(xp), '-')



In [34]:
np.vstack((xp, p(xp))).T


Out[34]:
array([[  0.00000000e+00,   7.25512889e-02],
       [  1.00100100e-03,   6.61331844e-02],
       [  2.00200200e-03,   5.97415234e-02],
       ..., 
       [  9.97997998e-01,   1.48552680e+01],
       [  9.98998999e-01,   1.49268326e+01],
       [  1.00000000e+00,   1.49986371e+01]])

In [23]:
np.concatenate(xp, p(xp)).shape


---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-23-4dbd452ce7a7> in <module>()
----> 1 np.concatenate(xp, p(xp)).shape

TypeError: only integer scalar arrays can be converted to a scalar index

In [43]:
np.savetxt("/Users/weilu/Desktop/forYe_2.txt", np.vstack((xp, p(xp))).T)

In [26]:
xs = ["x" + str(i) for i in range(4)]

In [27]:
file_name = "/Users/weilu/Research/davinci/nov_2017/13nov/nov_18_all_freeEnergy_calculation_sample_range_mode_2/tiny/1d_dis/test/evpb-500.dat"
data = pd.read_table(file_name, sep="\s+", skiprows=1, names=["a", "row"] + xs)

In [28]:
data


Out[28]:
a row x0 x1 x2 x3
0 0 7.416 -47.994 -556.042 -123.379 25.934
1 1 10.594 -46.413 -511.629 -131.176 25.328
2 2 13.772 -45.912 -537.320 -124.032 21.976
3 3 16.950 -46.609 -525.053 -128.221 23.376
4 4 20.128 -46.699 -536.085 -126.515 23.981
5 5 23.306 -46.227 -533.611 -127.478 23.560
6 6 26.484 -46.499 -536.876 -127.584 23.816
7 7 29.662 -46.344 -537.512 -127.264 23.668
8 8 32.840 -45.969 -534.914 -127.464 23.668
9 9 36.018 -45.622 -532.993 -127.706 23.565
10 10 39.196 -44.831 -527.520 -128.307 23.571
11 11 42.374 -43.346 -519.088 -128.209 23.078
12 12 45.552 -38.318 -503.961 -128.945 23.026
13 13 48.730 -33.931 -484.439 -131.776 20.832
14 14 51.908 -34.038 -486.493 -130.452 20.768
15 15 55.086 -33.973 -488.881 -130.584 20.839
16 16 58.264 -34.064 -490.380 -130.336 21.056
17 17 61.442 -33.944 -489.637 -130.416 21.018
18 18 64.620 -33.821 -488.490 -130.625 20.795
19 19 67.798 -33.832 -487.646 -130.491 20.830
20 20 70.976 -33.606 -485.158 -130.588 20.763
21 21 74.154 -33.311 -482.975 -130.854 20.718
22 22 77.332 -33.219 -480.346 -130.802 20.839
23 23 80.510 -32.450 -478.988 -131.193 20.707
24 24 83.688 -30.148 -480.320 -130.246 20.823
25 25 86.866 -23.117 -468.846 -126.829 19.195
26 26 90.044 -10.410 -453.816 -123.397 14.668
27 27 93.222 -7.601 -449.360 -123.511 13.975
28 28 96.400 -6.724 -449.216 -123.739 13.804
29 29 99.578 -6.548 -449.829 -122.882 13.824
30 30 102.756 -6.284 -450.595 -123.391 13.879
31 31 105.934 -5.963 -447.360 -123.765 13.875
32 32 109.112 -5.911 -448.929 -123.075 13.533
33 33 112.290 -5.733 -446.972 -123.280 13.573
34 34 115.468 -5.832 -447.591 -123.226 13.815
35 35 118.646 -5.303 -445.784 -123.161 14.024
36 36 121.824 -4.844 -443.065 -122.454 13.988
37 37 125.002 -4.633 -442.670 -122.069 13.961
38 38 128.180 -4.494 -443.473 -121.084 13.902
39 39 131.358 -4.682 -443.466 -121.284 14.088
40 40 134.536 -4.627 -441.458 -121.614 14.114
41 41 137.714 -4.737 -441.957 -122.168 13.760
42 42 140.892 -4.783 -442.248 -122.861 13.723
43 43 144.070 -4.780 -443.675 -122.885 13.480
44 44 147.248 -4.295 -440.845 -123.261 13.856
45 45 150.426 -4.867 -446.190 -121.084 12.524
46 46 153.604 -3.991 -438.909 -124.392 14.087
47 47 156.782 -3.979 -438.342 -123.054 12.682
48 48 159.960 -3.862 -427.626 -122.390 12.970

In [29]:
data.plot("row")


Out[29]:
<matplotlib.axes._subplots.AxesSubplot at 0x1816e3ceb8>

In [18]:
file_name = "/Users/weilu/Research/davinci/nov_2017/13nov/all_data_folder/new_next_gen_native_based_memb_3_rg_0.4_lipid_0.6_extended/dis102.0.feather"
pd.read_feather(file_name)


Out[18]:
index Step Run Temp Qw Energy Distance Lipid AMH-Go Membrane Rg TotalE
0 0 4000 0 T1 0.050231 -234.766568 265.647076 -0.006706 -307.914444 -91.507692 19.505292 -234.773274
1 11 4000 8 T8 0.045968 116.691673 259.980637 0.013824 -265.076280 -94.914409 18.454996 116.705497
2 10 4000 7 T7 0.043892 93.740996 261.769868 0.004286 -262.986419 -94.705882 21.454883 93.745282
3 9 4000 3 T3 0.051766 -189.528430 263.570988 0.022973 -322.935598 -92.257971 16.866771 -189.505457
4 7 4000 2 T2 0.048512 -229.777776 269.447277 0.004204 -305.492614 -87.394010 16.330156 -229.773571
5 6 4000 6 T6 0.047496 -5.218529 264.982003 0.016421 -283.891603 -95.155745 18.331384 -5.202108
6 8 4000 10 T10 0.041326 309.550477 259.120779 0.016156 -221.961107 -90.828335 22.227939 309.566633
7 4 4000 5 T5 0.047779 -15.438613 259.423772 0.014050 -281.433805 -96.976294 26.207688 -15.424562
8 3 4000 9 T9 0.046371 232.310776 256.865072 0.015319 -246.313400 -92.498208 19.954271 232.326095
9 2 4000 1 T0 0.055467 -256.314428 264.060065 0.005701 -321.907277 -89.737244 13.941821 -256.308727
10 1 4000 11 T11 0.043018 337.047892 263.160811 0.010790 -244.825356 -97.092587 23.117878 337.058681
11 5 4000 4 T4 0.048811 -109.367352 260.172062 0.008506 -285.362249 -104.802383 17.114985 -109.358846
12 19 8000 3 T3 0.062969 -272.646342 189.720595 -0.059241 -311.783470 -92.544651 22.689036 -272.705583
13 23 8000 10 T10 0.049768 498.937291 176.572801 -0.044437 -193.146466 -81.712693 20.753163 498.892853
14 22 8000 9 T9 0.053371 308.413157 179.893112 -0.023407 -231.113211 -87.735126 22.614856 308.389750
15 21 8000 1 T0 0.058895 -444.183383 186.423243 -0.119498 -324.237531 -98.652242 23.744580 -444.302882
16 20 8000 7 T8 0.050750 220.716851 179.934423 -0.061241 -216.718569 -89.218771 22.511368 220.655610
17 18 8000 0 T1 0.066869 -354.597857 185.111326 -0.080965 -324.318488 -89.634420 23.507561 -354.678822
18 14 8000 6 T6 0.054599 35.172071 190.388328 -0.016495 -276.656092 -88.902966 16.320541 35.155576
19 16 8000 2 T2 0.067242 -323.471752 192.825039 -0.026619 -329.733971 -99.782100 21.876145 -323.498371
20 15 8000 8 T7 0.055813 208.722619 182.691929 -0.043373 -251.014861 -94.494494 24.930775 208.679247
21 13 8000 4 T4 0.053429 -150.375662 180.107080 -0.086346 -295.812427 -107.865497 26.276475 -150.462008
22 12 8000 5 T5 0.063877 -62.011677 177.352764 -0.024557 -294.605184 -73.392384 20.775183 -62.036234
23 17 8000 11 T11 0.047850 644.524081 183.910158 -0.025173 -185.842671 -81.125388 15.811946 644.498908
24 31 12000 8 T7 0.070015 112.476297 141.452323 -0.032376 -288.462950 -102.135459 17.759276 112.443921
25 35 12000 5 T5 0.076522 -56.360121 142.905710 -0.015429 -308.616610 -78.517566 12.040642 -56.375550
26 34 12000 0 T1 0.080515 -429.504974 140.671601 -0.024788 -348.203680 -70.200165 7.954754 -429.529762
27 33 12000 9 T9 0.062101 405.788167 145.187588 0.005893 -183.516945 -90.214594 13.777486 405.794060
28 32 12000 7 T8 0.055516 188.267992 138.787821 -0.072939 -240.761991 -83.748272 9.280151 188.195054
29 30 12000 6 T6 0.072978 34.212218 148.074867 -0.007482 -299.899837 -75.443418 11.978723 34.204736
... ... ... ... ... ... ... ... ... ... ... ... ...
119970 59968 39992000 10 T0 0.473354 -964.767690 83.897199 -35.533529 -553.241111 -130.547448 22.148181 -1000.301219
119971 59967 39992000 5 T3 0.166380 -621.487662 104.213291 -5.717475 -449.137974 -132.039479 17.984726 -627.205137
119972 59966 39992000 11 T8 0.083826 229.409609 98.523540 1.210406 -251.318190 -121.771176 25.225163 230.620015
119973 59965 39992000 8 T9 0.087510 382.110346 98.018669 0.595350 -256.284460 -138.595736 30.396092 382.705696
119974 59964 39992000 7 T11 0.069946 860.479045 96.838165 -0.841994 -170.556001 -104.583387 26.700249 859.637051
119975 59969 39992000 4 T4 0.173980 -446.069262 95.188549 -8.510919 -442.237987 -137.905417 18.407810 -454.580181
119976 59987 39996000 11 T8 0.084809 167.875039 88.013006 0.562383 -294.050542 -135.239887 30.152353 168.437422
119977 59986 39996000 10 T0 0.435754 -939.697007 83.962555 -35.864223 -542.890361 -131.611827 23.512900 -975.561230
119978 59985 39996000 0 T7 0.099437 71.097040 88.899475 -0.228191 -322.799281 -112.925592 28.447192 70.868849
119979 59983 39996000 3 T1 0.396590 -889.625791 75.169962 -35.273809 -530.019088 -132.543463 24.763084 -924.899600
119980 59982 39996000 6 T5 0.113894 -267.101337 98.489769 -4.202295 -358.410965 -129.644436 23.818496 -271.303631
119981 59984 39996000 5 T3 0.150926 -605.083789 91.928745 -6.538834 -457.855480 -122.731267 14.793676 -611.622624
119982 59980 39996000 7 T11 0.058398 823.916215 97.822234 -0.093190 -157.167600 -112.648681 22.735316 823.823025
119983 59979 39996000 1 T6 0.098872 -87.364357 101.320148 -2.335267 -331.340907 -108.517130 15.680187 -89.699624
119984 59978 39996000 4 T4 0.144083 -506.515892 101.082405 -6.613090 -424.474999 -134.520153 15.677163 -513.128982
119985 59977 39996000 9 T10 0.069922 550.494311 95.018186 -0.095975 -170.799857 -119.137250 26.039205 550.398336
119986 59976 39996000 2 T2 0.149312 -736.906309 94.534059 -5.899493 -473.905877 -119.044270 12.616343 -742.805802
119987 59981 39996000 8 T9 0.076532 367.263997 94.992003 0.636725 -239.041510 -127.361796 34.866496 367.900722
119988 59997 40000000 6 T5 0.114523 -313.181798 93.844342 -4.601699 -383.824635 -129.015162 15.142883 -317.783497
119989 59996 40000000 0 T7 0.086224 110.899177 100.205209 0.061920 -299.256869 -111.238650 16.093093 110.961097
119990 59995 40000000 1 T6 0.087009 -68.032877 88.445756 -0.952790 -354.073710 -129.986228 16.022044 -68.985667
119991 59994 40000000 3 T1 0.436277 -903.796772 84.954701 -36.516806 -531.030466 -129.889202 22.639386 -940.313577
119992 59993 40000000 2 T2 0.144650 -752.760773 89.825377 -6.078300 -461.762772 -130.182392 16.563984 -758.839074
119993 59990 40000000 9 T10 0.073870 522.143489 92.908428 0.169944 -206.951254 -102.274775 26.885647 522.313433
119994 59991 40000000 7 T11 0.063499 740.924388 103.869403 0.064377 -172.224480 -96.325834 19.451740 740.988766
119995 59989 40000000 5 T3 0.152650 -563.227279 97.869168 -6.571973 -437.755236 -136.251628 13.900375 -569.799252
119996 59988 40000000 10 T0 0.445521 -932.555466 88.190758 -36.370036 -538.263297 -131.628756 26.054655 -968.925502
119997 59998 40000000 4 T4 0.157763 -474.064452 106.160885 -7.166546 -420.401375 -138.126175 18.982376 -481.230998
119998 59992 40000000 8 T9 0.068335 354.551394 96.722110 0.938624 -236.218463 -118.097264 33.895782 355.490017
119999 59999 40000000 11 T8 0.084654 169.065290 89.865639 -0.368532 -291.457858 -130.470839 25.581819 168.696758

120000 rows × 12 columns


In [2]:
z_data.as_matrix().shape


---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-2-ffbea6f51752> in <module>()
----> 1 z_data.as_matrix().shape

NameError: name 'z_data' is not defined

In [19]:
x = np.array([5.05, 5.25, 5.91, 6.54, 7.11, 7.68, 8.26, 8.85, 9.44, 10.01, 10.62, 11.17, 11.75, 12.32, 12.89, 13.46, 14.05, 14.66, 15.28, 15.87, 16.52, 17.12, 17.75, 18.38, 19.04, 19.61, 20.33, 20.94, 21.60, 22.23, 22.91, 23.50, 24.12, 24.77, 25.43, 26.02, 26.68, 27.29, 27.95, 28.58, 29.22, 29.87, 30.53, 31.21, 31.86, 32.39, 32.97, 33.54, 34.09, 34.60, 35.03])
y = [-7.82, -7.78, -7.41, -7.04, -6.63, -6.14, -5.57, -4.96, -4.43, -3.94, -3.41, -2.88, -2.27, -1.70, -1.09, -0.52, -0.07, 0.41, 0.82, 1.23, 1.60, 1.85, 2.10, 2.31, 2.40, 2.56, 2.53, 2.58, 2.55, 2.52, 2.40, 2.25, 2.10, 1.90, 1.67, 1.48, 1.24, 0.97, 0.82, 0.58, 0.39, 0.24, 0.12, -0.03, -0.06, -0.05, -0.05, -0.08, -0.07, -0.07, -0.06]
x += 10

In [20]:
p = np.poly1d(np.polyfit(x, y, 5))
ynew = y - p(43.03356301)
p = np.poly1d(np.polyfit(x, ynew, 5))
d = np.polyder(p, m=1)

In [21]:
p(43.03356301)


Out[21]:
4.4053649617126212e-13

In [38]:
def compute_theta(z):
    k_bin = 0.2
    memb_b = 15
    theta = 0.5*(np.tanh(k_bin*(z+memb_b))-np.tanh(k_bin*(z-memb_b)));
    return theta

In [26]:
np.tanh(0.5)


Out[26]:
0.46211715726000974

In [29]:
d(14.33)


Out[29]:
0.000499517284119122

In [33]:
dis = np.linspace(15, 50, 100)
plt.plot(dis, p(dis))


Out[33]:
[<matplotlib.lines.Line2D at 0x181cd97198>]

In [39]:
z = np.linspace(-30,30, 100)
plt.plot(z, compute_theta(z))


Out[39]:
[<matplotlib.lines.Line2D at 0x181fa77400>]

In [50]:
n = 100
xv, yv = np.meshgrid(dis, z, sparse=False, indexing='ij')
f = np.zeros((n,n))
for i in range(n):
    for j in range(n):
        f[i][j] = p(xv[i,j]) * compute_theta(yv[i,j])

In [73]:
p(15)


Out[73]:
-7.6316250583217027

In [80]:
n = 100
f2 = np.zeros((n,n))
for i in range(n):
    for j in range(n):
        f2[i][j] = (p(xv[i,j]) -p(15)) * compute_theta(yv[i,j])

In [81]:
data = [
    go.Surface(
        x=dis,
        y=z,
        z=f2.T
    )
]
layout = go.Layout(
    title='Mt Bruno Elevation',
    scene = dict(
        xaxis = dict(
            title='Dis'),
        yaxis = dict(
            title='Z'),
        zaxis = dict(
            title='f'),),
    autosize=False,
    width=1000,
    height=1000,
    margin=dict(
        l=65,
        r=50,
        b=65,
        t=90
    )
)
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename='elevations-3d-surface')


Out[81]:

In [83]:
data = [
    go.Surface(
        x=dis,
        y=z,
        z=f.T
    )
]
layout = go.Layout(
    title='Mt Bruno Elevation',
    scene = dict(
        xaxis = dict(
            title='Dis'),
        yaxis = dict(
            title='Z'),
        zaxis = dict(
            title='f'),),
    autosize=False,
    width=1000,
    height=1000,
    margin=dict(
        l=65,
        r=50,
        b=65,
        t=90
    )
)
fig2 = go.Figure(data=data, layout=layout)
py.iplot(fig2, filename='elevations-3d-surface')


Out[83]:

In [66]:
trace1 = go.Scatter(
    x=[0, 1, 2, 3, 4, 5, 6, 7, 8],
    y=[8, 7, 6, 5, 4, 3, 2, 1, 0]
)
trace2 = go.Scatter(
    x=[0, 1, 2, 3, 4, 5, 6, 7, 8],
    y=[0, 1, 2, 3, 4, 5, 6, 7, 8]
)
data = [trace1, trace2]
layout = go.Layout(
    xaxis=dict(
        title='AXIS TITLE',
        titlefont=dict(
            family='Arial, sans-serif',
            size=18,
            color='lightgrey'
        ),
        showticklabels=True,
        tickangle=45,
        tickfont=dict(
            family='Old Standard TT, serif',
            size=14,
            color='black'
        ),
        exponentformat='e',
        showexponent='All'
    ),
    yaxis=dict(
        title='AXIS sdfTITLE',
        titlefont=dict(
            family='Arial, sans-serif',
            size=18,
            color='lightgrey'
        ),
        showticklabels=True,
        tickangle=45,
        tickfont=dict(
            family='Old Standard TT, serif',
            size=14,
            color='black'
        ),
        exponentformat='e',
        showexponent='All'
    )
)
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename='axes-labels')


Out[66]:

In [8]:
def expand_grid(dictionary):
    return pd.DataFrame([row for row in product(*dictionary.values())],
                        columns=dictionary.keys())


def variable_test2(k_list=[1],
                      force_ramp_rate_list=[1],
                      memb_k_list=[1],
                      force_list=["ramp"],
                      rg_list=[0.08],
                      pressure_list=[0.1],
                      repeat=1,
                      mode_list=[2],
                      commons=0,
                      temperature_list=[300],
                      start_from_list=["native"],
                      simulation_model_list=["go"]):
    inputs = locals()
    tmp = {}
    for key,value in test.items():
        if isinstance(value, list):
            tmp[key] = value
    return inputs
#     all_inputs = expand_grid(inputs)
#     for myInput in all_inputs:
#         print(myInput)

In [9]:
start_from_list=["native"]
# start_from_list=["extended", "topology"]
mode_list = [3]  # lipid mediated interaction
# pressure_list = [0, 0.1, 1.0]
pressure_list = [0]
force_ramp_rate_list=[10]
temperature_list=[500]
memb_k_list = [3]
rg_list = [0.1]
force_list = [0.4, 0.5, 0.6, 0.7, 0.8]
repeat = 2
test = variable_test2(temperature_list=temperature_list,
                start_from_list=start_from_list,
                rg_list=rg_list,
                memb_k_list=memb_k_list,
                mode_list=mode_list,
                pressure_list=pressure_list,
                force_ramp_rate_list=force_ramp_rate_list,
                force_list=force_list,
                repeat=repeat,
                commons=1)

In [11]:
test


Out[11]:
{'commons': 1,
 'force_list': [0.4, 0.5, 0.6, 0.7, 0.8],
 'force_ramp_rate_list': [10],
 'k_list': [1],
 'memb_k_list': [3],
 'mode_list': [3],
 'pressure_list': [0],
 'repeat': 2,
 'rg_list': [0.1],
 'simulation_model_list': ['go'],
 'start_from_list': ['native'],
 'temperature_list': [500]}

In [21]:
tmp = {}
for key,value in test.items():
    if isinstance(value, list):
        tmp[key] = value
print(tmp)


{'simulation_model_list': ['go'], 'start_from_list': ['native'], 'temperature_list': [500], 'mode_list': [3], 'pressure_list': [0], 'rg_list': [0.1], 'force_list': [0.4, 0.5, 0.6, 0.7, 0.8], 'memb_k_list': [3], 'force_ramp_rate_list': [10], 'k_list': [1]}

In [22]:
a = tmp['force_list']

In [24]:
len(a)


Out[24]:
5

In [25]:
length(a)


---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-25-e845004635c0> in <module>()
----> 1 length(a)

NameError: name 'length' is not defined

In [27]:
def expand_grid(dictionary):
    return pd.DataFrame([row for row in product(*dictionary.values())],
                        columns=dictionary.keys())
atest = expand_grid(tmp)

In [30]:
for index, row in atest.iterrows():
    print(row.columns)


---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-30-8a76c792c22b> in <module>()
      1 for index, row in atest.iterrows():
----> 2     print(row.columns)

~/anaconda3/lib/python3.6/site-packages/pandas/core/generic.py in __getattr__(self, name)
   3075         if (name in self._internal_names_set or name in self._metadata or
   3076                 name in self._accessors):
-> 3077             return object.__getattribute__(self, name)
   3078         else:
   3079             if name in self._info_axis:

AttributeError: 'Series' object has no attribute 'columns'

In [33]:
a = atest.loc[0]

In [35]:
type(a)


Out[35]:
pandas.core.series.Series

In [40]:
for t in a.index:
    exec(t.replace("_list", "")+"= '"+str(a[t]) + "'")

In [71]:
def move_data(data_folder, freeEnergy_folder, folder, kmem=0.2, klipid=0.1, kgo=0.1, krg=0.2):
    print("move data")
    os.system("mkdir -p "+freeEnergy_folder+folder+"/data")
    dis_list = glob.glob(data_folder+folder+"/dis*.feather")
    for dis_file in dis_list:
        dis = dis_file.split("/")[-1].replace('dis', '').replace('.feather', '')
        print(dis)
        t6 = pd.read_feather(dis_file)
        remove_columns = ['index']
        t6 = t6.drop(remove_columns, axis=1)
        t6 = t6.assign(TotalE_perturb_mem_p=t6.TotalE + kmem*t6.Membrane)
        t6 = t6.assign(TotalE_perturb_mem_m=t6.TotalE - kmem*t6.Membrane)
        t6 = t6.assign(TotalE_perturb_lipid_p=t6.TotalE + klipid*t6.Lipid)
        t6 = t6.assign(TotalE_perturb_lipid_m=t6.TotalE - klipid*t6.Lipid)
        t6 = t6.assign(TotalE_perturb_go_p=t6.TotalE + kgo*t6["AMH-Go"])
        t6 = t6.assign(TotalE_perturb_go_m=t6.TotalE - kgo*t6["AMH-Go"])
        t6 = t6.assign(TotalE_perturb_rg_p=t6.TotalE + krg*t6.Rg)
        t6 = t6.assign(TotalE_perturb_rg_m=t6.TotalE - krg*t6.Rg)
        dic = {"T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000}
        temps = list(dic.values())
        return t6
#         def convert(x):
#             return dic[x]
#         t6["Temp"] = t6["Temp"].apply(convert)

#         for temp in temps:
#             if temp > 600:
#                 continue

#             tmp = t6.query('Temp=="{}"& Step > 1e7'.format(temp))
        
#             tmp.to_csv(freeEnergy_folder+folder+"/data/t_{}_dis_{}.dat".format(temp, dis), sep=' ', index=False, header=False)

In [72]:
pre = "/Users/weilu/Research/davinci/"
data_folder = pre + "all_data_folder/"
freeEnergy_folder = "all_freeEnergy_calculation_nov11/"
folder= "next_gen_native_based_memb_3_rg_0.2_lipid_0.6_extended"
test = move_data(data_folder, freeEnergy_folder, folder)


move data
93.0

In [90]:
pd.read_feather("/Users/weilu/Research/server/nov_2017/06nov/all_data_folder_nov15/memb_3_rg_0.1_lipid_1_extended/dis124.0.feather")


Out[90]:
index Step Run Temp Qw Energy Distance Lipid AMH-Go Membrane Rg TotalE
0 0 4000 0 T0 0.054115 -351.880904 270.345832 0.016447 -329.338299 -116.860909 5.818426 -351.864458
1 11 4000 8 T8 0.045126 63.814883 269.423579 0.045335 -274.242233 -121.475216 5.531545 63.860218
2 10 4000 7 T7 0.048213 22.141554 266.712860 0.052354 -292.625826 -136.395339 6.386973 22.193909
3 9 4000 3 T3 0.048580 -199.175975 270.900760 0.009984 -304.747825 -120.918671 5.887292 -199.165991
4 7 4000 2 T2 0.047893 -204.223642 266.765199 0.016386 -296.750140 -118.157489 7.563550 -204.207256
5 6 4000 6 T6 0.044583 -53.954438 262.030362 0.109783 -278.444662 -125.019353 7.621083 -53.844655
6 8 4000 10 T10 0.041983 248.051582 268.038796 0.177896 -238.759180 -130.219741 6.710839 248.229478
7 4 4000 5 T5 0.047760 -90.384326 268.516017 -0.031774 -297.485620 -125.728921 5.936438 -90.416100
8 3 4000 9 T9 0.043942 149.467142 267.221176 0.034383 -270.782421 -122.545242 6.788831 149.501526
9 2 4000 1 T1 0.050061 -294.238044 266.284285 -0.037151 -328.196310 -117.636339 5.918008 -294.275195
10 1 4000 11 T11 0.039714 438.231528 264.466399 0.156438 -232.829569 -119.372722 6.187052 438.387966
11 5 4000 4 T4 0.045115 -170.191740 264.541605 0.018205 -278.986306 -128.210028 6.063303 -170.173535
12 19 8000 3 T3 0.056063 -281.982813 207.176806 -0.254685 -314.792467 -120.190724 5.805192 -282.237498
13 23 8000 10 T10 0.044685 349.429064 188.824875 -0.100695 -204.231006 -108.020079 7.827426 349.328368
14 22 8000 9 T9 0.048451 131.271724 193.684213 0.009991 -276.702520 -106.608127 6.662593 131.281716
15 21 8000 1 T1 0.061323 -512.890852 195.868418 -0.666855 -356.388488 -111.784327 6.942482 -513.557707
16 20 8000 7 T7 0.049664 83.746704 198.455709 -0.142284 -257.717059 -100.706217 6.278823 83.604421
17 18 8000 0 T0 0.063300 -547.420433 194.519214 -0.443692 -362.767802 -111.620459 5.595390 -547.864124
18 14 8000 6 T5 0.059013 -87.514848 195.679061 -0.741277 -293.567567 -132.606398 6.442564 -88.256125
19 16 8000 2 T2 0.050512 -409.231628 194.313956 -0.011977 -321.243062 -121.584912 8.655962 -409.243605
20 15 8000 8 T8 0.053989 119.067006 194.715393 -0.405259 -246.759407 -124.946293 5.699800 118.661747
21 13 8000 4 T4 0.056084 -177.429400 199.159235 -0.305182 -299.863260 -126.377275 6.309685 -177.734583
22 12 8000 5 T6 0.057187 -95.551317 197.904872 -0.933465 -303.754645 -112.163903 5.762946 -96.484782
23 17 8000 11 T11 0.044548 636.220711 195.273649 -0.180782 -196.589630 -113.896781 6.061343 636.039928
24 31 12000 8 T8 0.072416 204.284954 151.081026 -0.806811 -229.359302 -117.600561 4.716089 203.478143
25 35 12000 5 T6 0.083702 -144.217133 154.333882 -1.008831 -311.622546 -116.399633 5.152809 -145.225965
26 34 12000 0 T0 0.087851 -656.484421 149.547418 -0.841431 -394.202866 -117.036255 5.894072 -657.325852
27 33 12000 9 T9 0.061968 256.371561 163.013806 -0.069772 -257.962246 -117.448701 4.045138 256.301790
28 32 12000 7 T7 0.079746 24.320027 156.108126 -0.423707 -296.239456 -115.239595 4.256585 23.896320
29 30 12000 6 T5 0.072047 -174.429361 154.414573 -1.660969 -303.575072 -130.848113 4.975343 -176.090330
... ... ... ... ... ... ... ... ... ... ... ... ...
119970 59968 39992000 10 T0 0.372776 -946.355018 105.027309 -38.683553 -543.770262 -128.921567 6.492016 -985.038571
119971 59967 39992000 5 T4 0.333583 -577.311863 110.206760 -35.922282 -495.082302 -126.954363 6.787005 -613.234145
119972 59966 39992000 11 T9 0.087711 411.982265 128.692651 -1.656738 -231.833902 -146.700364 8.225935 410.325527
119973 59965 39992000 8 T10 0.082940 533.343975 117.966540 -3.635558 -229.885543 -132.330897 10.228751 529.708417
119974 59964 39992000 7 T2 0.357331 -787.254931 111.967013 -38.965602 -520.028145 -128.830151 5.953294 -826.220533
119975 59969 39992000 4 T1 0.352905 -880.521894 108.576482 -38.488676 -518.742353 -123.161860 5.959515 -919.010570
119976 59987 39996000 11 T9 0.081219 378.405563 120.826292 -3.520312 -226.827752 -131.259083 6.179524 374.885251
119977 59986 39996000 10 T0 0.397759 -1000.019018 109.243366 -37.651008 -567.599262 -130.170723 6.019018 -1037.670026
119978 59985 39996000 0 T11 0.068038 713.320150 110.518351 -0.304808 -162.821374 -117.716206 10.701913 713.015342
119979 59983 39996000 3 T3 0.346793 -659.251790 114.695598 -38.207975 -506.224122 -126.256116 6.931243 -697.459766
119980 59982 39996000 6 T6 0.287069 -309.086916 113.147057 -35.357858 -423.126299 -127.020498 9.231157 -344.444775
119981 59984 39996000 5 T4 0.338576 -584.582405 111.505568 -37.356876 -509.282236 -122.063831 6.812884 -621.939282
119982 59980 39996000 7 T2 0.389944 -785.855064 119.160400 -38.853646 -517.006719 -119.759688 8.053806 -824.708709
119983 59979 39996000 1 T7 0.099825 -70.625922 126.798717 0.298967 -314.819773 -135.926008 5.285914 -70.326954
119984 59978 39996000 4 T1 0.350104 -827.158192 116.993359 -37.011858 -528.662653 -120.763636 6.263044 -864.170050
119985 59977 39996000 9 T5 0.262148 -419.776716 109.302873 -33.330034 -442.376799 -127.541955 8.605727 -453.106749
119986 59976 39996000 2 T8 0.100737 10.000762 126.742081 -1.405365 -325.040883 -119.399064 4.642004 8.595397
119987 59981 39996000 8 T10 0.071909 534.302694 119.934157 -4.660159 -187.991066 -131.749643 10.532141 529.642535
119988 59997 40000000 6 T6 0.260731 -279.798216 117.232719 -33.837006 -413.065223 -116.444310 5.465174 -313.635222
119989 59996 40000000 0 T11 0.070635 750.103094 108.529912 -1.086546 -155.750902 -136.069970 5.983952 749.016548
119990 59995 40000000 1 T8 0.087493 88.083047 117.633546 0.273617 -280.331505 -142.587445 4.311181 88.356664
119991 59994 40000000 3 T3 0.329895 -648.362417 119.609117 -36.272957 -503.351198 -121.966109 5.639040 -684.635374
119992 59993 40000000 2 T7 0.093677 30.724765 107.400051 -0.003280 -291.188772 -133.065295 7.125238 30.721484
119993 59990 40000000 9 T5 0.248504 -371.329247 113.949242 -33.075371 -433.497181 -127.379459 6.986356 -404.404617
119994 59991 40000000 7 T2 0.346403 -776.278507 119.358464 -37.405684 -502.157548 -126.615712 6.967927 -813.684191
119995 59989 40000000 5 T4 0.300838 -540.931493 121.977246 -34.840728 -497.079326 -113.340417 4.252293 -575.772221
119996 59988 40000000 10 T0 0.384186 -972.969404 104.433060 -38.044366 -558.684165 -128.739303 5.641534 -1011.013770
119997 59998 40000000 4 T1 0.363469 -853.709084 112.512214 -36.558659 -522.895041 -118.983219 4.969266 -890.267744
119998 59992 40000000 8 T10 0.077688 508.479622 115.750870 -1.150006 -192.174294 -109.923069 5.581487 507.329616
119999 59999 40000000 11 T9 0.079237 359.050248 115.989939 -3.636335 -250.392017 -140.995752 7.170667 355.413913

120000 rows × 12 columns


In [ ]:


In [120]:
data2 = pd.read_table("/Users/weilu/Documents/yegao/gcmc/rho_vs_p_2.dat", sep="\s+", skiprows=2, names=["TimeStep", "rho", "p", "muex"])

In [106]:
data = pd.read_table("/Users/weilu/Documents/yegao/gcmc/rho_vs_p.dat", sep="\s+", skiprows=2, names=["TimeStep", "rho", "p", "muex"])

In [108]:
data.plot("rho", "muex", kind="scatter")


Out[108]:
<matplotlib.axes._subplots.AxesSubplot at 0x1824dd6dd8>

In [130]:
data2.plot("rho", "muex", kind="scatter")


Out[130]:
<matplotlib.axes._subplots.AxesSubplot at 0x182c67d2e8>

In [125]:
5.**(1/3)


Out[125]:
1.7099759466766968

In [114]:
0.53*5.**(1/3)


Out[114]:
0.9062872517386493

In [139]:
data3 = pd.read_table("/Users/weilu/Documents/yegao/gcmc/rho_vs_p_3.dat", sep="\s+", skiprows=2, names=["TimeStep", "rho", "p", "muex"])
data3.plot("rho", "muex", kind="scatter")


Out[139]:
<matplotlib.axes._subplots.AxesSubplot at 0x182dd81748>

In [136]:
rho_list = np.log(np.array([0.5, 1, 2, 3,4,5]))/(np.log(5))

In [138]:
rho_list*-1.25


Out[138]:
array([ 0.5383457 , -0.        , -0.5383457 , -0.85325774, -1.0766914 ,
       -1.25      ])

In [ ]: