In [1]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import glob
import jedi
%matplotlib inline
In [2]:
def read_temper(n=4, location="."):
all_lipid_list = []
for i in range(n):
file = "lipid.{}.dat".format(i)
lipid = pd.read_csv(location+file).assign(Run = i)
lipid.columns = lipid.columns.str.strip()
lipid = lipid[["Steps","Lipid","Run"]]
all_lipid_list.append(lipid)
lipid = pd.concat(all_lipid_list)
all_dis_list = []
for i in range(n):
file = "addforce.{}.dat".format(i)
dis = pd.read_csv(location+file).assign(Run = i)
dis.columns = dis.columns.str.strip()
remove_columns = ['AddedForce', 'Dis12', 'Dis34', 'Dis56']
dis.drop(remove_columns, axis=1,inplace=True)
all_dis_list.append(dis)
dis = pd.concat(all_dis_list)
all_wham_list = []
for i in range(n):
file = "wham.{}.dat".format(i)
wham = pd.read_csv(location+file).assign(Run = i)
wham.columns = wham.columns.str.strip()
remove_columns = ['Rg', 'Tc']
wham = wham.drop(remove_columns, axis=1)
all_wham_list.append(wham)
wham = pd.concat(all_wham_list)
file = "../log.lammps"
temper = pd.read_table(location+file, skiprows=2, sep=' ')
temper = temper.melt(id_vars=['Step'], value_vars=['T' + str(i) for i in range(n)], value_name="Temp", var_name="Run")
temper["Run"] = temper["Run"].str[1:].astype(int)
temper["Temp"] = "T" + temper["Temp"].astype(str)
t2 = temper.merge(wham, how='inner', left_on=["Step", "Run"], right_on=["Steps", "Run"]
).sort_values('Step').drop('Steps', axis=1)
t3 = t2.merge(dis, how='inner', left_on=["Step", "Run"], right_on=["Steps", "Run"]
).sort_values('Step').drop('Steps', axis=1)
t4 = t3.merge(lipid, how='inner', left_on=["Step", "Run"], right_on=["Steps", "Run"]
).sort_values('Step').drop('Steps', axis=1)
t4 = t4.assign(TotalE = t4.Energy + t4.Lipid)
return t4
In [59]:
def read_temper(n=4, location="."):
all_lipid_list = []
for i in range(n):
file = "lipid.{}.dat".format(i)
lipid = pd.read_csv(location+file).assign(Run = i)
lipid.columns = lipid.columns.str.strip()
lipid = lipid[["Steps","Lipid","Run"]]
all_lipid_list.append(lipid)
lipid = pd.concat(all_lipid_list)
all_energy_list = []
for i in range(n):
file = "energy.{}.dat".format(i)
energy = pd.read_csv(location+file).assign(Run = i)
energy.columns = energy.columns.str.strip()
energy = energy[["Steps", "AMH-Go", "Membrane", "Rg", "Run"]]
all_energy_list.append(energy)
energy = pd.concat(all_energy_list)
all_dis_list = []
for i in range(n):
file = "addforce.{}.dat".format(i)
dis = pd.read_csv(location+file).assign(Run = i)
dis.columns = dis.columns.str.strip()
remove_columns = ['AddedForce', 'Dis12', 'Dis34', 'Dis56']
dis.drop(remove_columns, axis=1,inplace=True)
all_dis_list.append(dis)
dis = pd.concat(all_dis_list)
all_wham_list = []
for i in range(n):
file = "wham.{}.dat".format(i)
wham = pd.read_csv(location+file).assign(Run = i)
wham.columns = wham.columns.str.strip()
remove_columns = ['Rg', 'Tc']
wham = wham.drop(remove_columns, axis=1)
all_wham_list.append(wham)
wham = pd.concat(all_wham_list)
file = "../log.lammps"
temper = pd.read_table(location+file, skiprows=2, sep=' ')
temper = temper.melt(id_vars=['Step'], value_vars=['T' + str(i) for i in range(n)], value_name="Temp", var_name="Run")
temper["Run"] = temper["Run"].str[1:].astype(int)
temper["Temp"] = "T" + temper["Temp"].astype(str)
t2 = temper.merge(wham, how='inner', left_on=["Step", "Run"], right_on=["Steps", "Run"]
).sort_values('Step').drop('Steps', axis=1)
t3 = t2.merge(dis, how='inner', left_on=["Step", "Run"], right_on=["Steps", "Run"]
).sort_values('Step').drop('Steps', axis=1)
t4 = t3.merge(lipid, how='inner', left_on=["Step", "Run"], right_on=["Steps", "Run"]
).sort_values('Step').drop('Steps', axis=1)
t5 = t4.merge(energy, how='inner', left_on=["Step", "Run"], right_on=["Steps", "Run"]
).sort_values('Step').drop('Steps', axis=1)
t5 = t5.assign(TotalE = t5.Energy + t5.Lipid)
return t5
In [55]:
location = "/Users/weilu/Research/server/oct_2017/week_oct09_two/more_higher_temp/simulation/dis_30.0/0/energy.0.dat"
location = "/Users/weilu/Research/server/oct_2017/week_oct16/memb_2_rg_0.1_lipid_1_extended/simulation/dis_30.0/0/energy.0.dat"
i =0
energy = pd.read_csv(location).assign(Run = i)
energy.columns = energy.columns.str.strip()
energy = energy[["Steps", "AMH-Go", "Membrane", "Rg", "Run"]]
In [68]:
In [72]:
location = "/Users/weilu/Research/server/oct_2017/week_oct16/memb_2_rg_0.1_lipid_1_topology/simulation/dis_30.0/0/"
n= 12
data= read_temper(location=location, n=n)
In [73]:
for i in range(12):
fig, axs = plt.subplots(ncols=3, nrows=1, figsize=(10, 4))
tmp = data.query('Temp=="T{}"'.format(i))
dic = {"T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000}
# tmp = tmp.assign(myT = tmp['Temp'].map(dic))
tmp.plot('Step', 'TotalE', subplots=True, ax=axs[2])
tmp.plot('Step', 'Run', subplots=True, ax=axs[1])
tmp.plot('Step', 'Qw', subplots=True, ax=axs[0])
In [64]:
location = "/Users/weilu/Research/server/oct_2017/week_oct16/memb_2_rg_0.1_lipid_1_topology/simulation/dis_80.0/0/"
n= 12
data= read_temper(location=location, n=n)
In [76]:
location = "/Users/weilu/Research/server/oct_2017/week_oct16/memb_2_rg_0.1_lipid_1_extended/simulation/dis_30.0/0/"
n= 12
data= read_temper(location=location, n=n)
for i in range(12):
fig, axs = plt.subplots(ncols=4, nrows=1, figsize=(10, 4))
tmp = data.query('Temp=="T{}"'.format(i))
dic = {"T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000}
# tmp = tmp.assign(myT = tmp['Temp'].map(dic))Distance
tmp.plot('Step', 'Distance', subplots=True, ax=axs[3])
tmp.plot('Step', 'TotalE', subplots=True, ax=axs[2])
tmp.plot('Step', 'Run', subplots=True, ax=axs[1])
tmp.plot('Step', 'Qw', subplots=True, ax=axs[0])
In [70]:
for i in range(12):
fig, axs = plt.subplots(ncols=3, nrows=1, figsize=(10, 4))
tmp = data.query('Run=={}'.format(i))
dic = {"T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000}
tmp = tmp.assign(myT = tmp['Temp'].map(dic))
tmp.plot('Step', 'TotalE', subplots=True, ax=axs[2])
tmp.plot('Step', 'myT', subplots=True, ax=axs[1])
tmp.plot('Step', 'Qw', subplots=True, ax=axs[0])
In [66]:
for i in range(12):
fig, axs = plt.subplots(ncols=2, nrows=1, figsize=(10, 4))
tmp = data.query('Temp=="T{}"'.format(i))
dic = {"T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000}
# tmp = tmp.assign(myT = tmp['Temp'].map(dic))
tmp.plot('Step', 'Run', subplots=True, ax=axs[1])
tmp.plot('Step', 'Qw', subplots=True, ax=axs[0])
In [65]:
for i in range(12):
fig, axs = plt.subplots(ncols=2, nrows=1, figsize=(10, 4))
tmp = data.query('Run=={}'.format(i))
dic = {"T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000}
tmp = tmp.assign(myT = tmp['Temp'].map(dic))
tmp.plot('Step', 'myT', subplots=True, ax=axs[1])
tmp.plot('Step', 'Qw', subplots=True, ax=axs[0])
In [60]:
location = "/Users/weilu/Research/server/oct_2017/week_oct16/memb_2_rg_0.1_lipid_1_topology/simulation/dis_30.0/0/"
n= 12
data= read_temper(location=location, n=n)
In [63]:
for i in range(12):
fig, axs = plt.subplots(ncols=2, nrows=1, figsize=(10, 4))
tmp = data.query('Run=={}'.format(i))
dic = {"T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000}
tmp = tmp.assign(myT = tmp['Temp'].map(dic))
tmp.plot('Step', 'myT', subplots=True, ax=axs[1])
tmp.plot('Step', 'Qw', subplots=True, ax=axs[0])
In [67]:
folder_list = [
'/Users/weilu/Research/server/oct_2017/week_oct16/memb_2_rg_0.1_lipid_1_extended/',
'/Users/weilu/Research/server/oct_2017/week_oct16/memb_2_rg_0.1_lipid_1_topology/'
]
dis_list = np.linspace(30, 130, 51)
dic = {"T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000}
for folder in folder_list:
for dis in dis_list:
print(dis)
location = folder + "/simulation/dis_{}/0/".format(dis)
data = read_temper(location=location, n=12)
temps = list(dic.keys())
for temp in temps:
tmp = data.query('Temp=="{}"& Step > 1e7 & Step <= 2.6e7'.format(temp))
tmp.to_csv(location+"t{}.dat".format(dic[temp]), sep=' ', index=False, header=False)
In [ ]: