In [2]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import glob
import jedi
%matplotlib inline
In [23]:
def read_temper(n=4, location="."):
all_lipid_list = []
for i in range(n):
file = "lipid.{}.dat".format(i)
lipid = pd.read_csv(location+file).assign(Run = i)
lipid.columns = lipid.columns.str.strip()
lipid = lipid[["Steps","Lipid","Run"]]
all_lipid_list.append(lipid)
lipid = pd.concat(all_lipid_list)
all_dis_list = []
for i in range(n):
file = "addforce.{}.dat".format(i)
dis = pd.read_csv(location+file).assign(Run = i)
dis.columns = dis.columns.str.strip()
remove_columns = ['AddedForce', 'Dis12', 'Dis34', 'Dis56']
dis.drop(remove_columns, axis=1,inplace=True)
all_dis_list.append(dis)
dis = pd.concat(all_dis_list)
all_wham_list = []
for i in range(n):
file = "wham.{}.dat".format(i)
wham = pd.read_csv(location+file).assign(Run = i)
wham.columns = wham.columns.str.strip()
remove_columns = ['Rg', 'Tc']
wham = wham.drop(remove_columns, axis=1)
all_wham_list.append(wham)
wham = pd.concat(all_wham_list)
file = "../log.lammps"
temper = pd.read_table(location+file, skiprows=2, sep=' ')
temper = temper.melt(id_vars=['Step'], value_vars=['T' + str(i) for i in range(n)], value_name="Temp", var_name="Run")
temper["Run"] = temper["Run"].str[1:].astype(int)
temper["Temp"] = "T" + temper["Temp"].astype(str)
t2 = temper.merge(wham, how='inner', left_on=["Step", "Run"], right_on=["Steps", "Run"]
).sort_values('Step').drop('Steps', axis=1)
t3 = t2.merge(dis, how='inner', left_on=["Step", "Run"], right_on=["Steps", "Run"]
).sort_values('Step').drop('Steps', axis=1)
t4 = t3.merge(lipid, how='inner', left_on=["Step", "Run"], right_on=["Steps", "Run"]
).sort_values('Step').drop('Steps', axis=1)
t4 = t4.assign(TotalE = t4.Energy + t4.Lipid)
return t4
In [24]:
n= 12
location = "/Users/weilu/Research/server/oct_2017/week_oct09_two/more_higher_temp/simulation/dis_30.0/0/"
data= read_temper(location=location, n=n)
In [27]:
# folder_list = [
# '/Users/weilu/Research/server/oct_2017/week_oct09_two/more_higher_temp/'
# ]
folder_list = [
'/Users/weilu/Research/server/oct_2017/week_oct09_two/more_higher_temp_topology/'
]
dis_list = np.linspace(30, 130, 51)
dic = {"T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000}
for folder in folder_list:
for dis in dis_list:
location = folder + "/simulation/dis_{}/0/".format(dis)
data = read_temper(location=location, n=12)
temps = list(dic.keys())
for temp in temps:
tmp = data.query('Temp=="{}"& Step > 1e7 & Step <= 2.6e7'.format(temp))
tmp.to_csv(location+"t{}.dat".format(dic[temp]), sep=' ', index=False, header=False)
In [28]:
folder_list = [
'/Users/weilu/Research/server/oct_2017/week_oct09_two/more_higher_temp/'
]
# folder_list = [
# '/Users/weilu/Research/server/oct_2017/week_oct09_two/more_higher_temp_topology/'
# ]
dis_list = np.linspace(30, 130, 51)
dic = {"T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000}
for folder in folder_list:
for dis in dis_list:
location = folder + "/simulation/dis_{}/0/".format(dis)
data = read_temper(location=location, n=12)
temps = list(dic.keys())
for temp in temps:
tmp = data.query('Temp=="{}"& Step > 1e7 & Step <= 2.6e7'.format(temp))
tmp.to_csv(location+"t{}.dat".format(dic[temp]), sep=' ', index=False, header=False)
In [ ]:
folder_list = [
'/Users/weilu/Research/server/oct_2017/week_oct09_two/more_higher_temp/'
]
# folder_list = [
# '/Users/weilu/Research/server/oct_2017/week_oct09_two/more_higher_temp_topology/'
# ]
dis_list = np.linspace(30, 130, 51)
dic = {"T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000}
for folder in folder_list:
for dis in dis_list:
location = folder + "/simulation/dis_{}/0/".format(dis)
data = read_temper(location=location, n=12)
temps = list(dic.keys())
for temp in temps:
tmp = data.query('Temp=="{}"& Step > 1e7 & Step <= 2.6e7'.format(temp))
tmp.to_csv(location+"t{}.dat".format(dic[temp]), sep=' ', index=False, header=False)
In [30]:
def read_temper2(n=4, location="."):
all_lipid_list = []
for i in range(n):
file = "lipid.{}.dat".format(i)
lipid = pd.read_csv(location+file).assign(Run = i)
lipid.columns = lipid.columns.str.strip()
lipid = lipid[["Steps","Lipid","Run"]]
all_lipid_list.append(lipid)
lipid = pd.concat(all_lipid_list)
all_dis_list = []
for i in range(n):
file = "addforce.{}.dat".format(i)
dis = pd.read_csv(location+file).assign(Run = i)
dis.columns = dis.columns.str.strip()
remove_columns = ['AddedForce', 'Dis12', 'Dis34', 'Dis56']
dis.drop(remove_columns, axis=1,inplace=True)
all_dis_list.append(dis)
dis = pd.concat(all_dis_list)
all_wham_list = []
for i in range(n):
file = "wham.{}.dat".format(i)
wham = pd.read_csv(location+file).assign(Run = i)
wham.columns = wham.columns.str.strip()
remove_columns = ['Rg', 'Tc']
wham = wham.drop(remove_columns, axis=1)
all_wham_list.append(wham)
wham = pd.concat(all_wham_list)
file = "../log.lammps"
temper = pd.read_table(location+file, skiprows=2, sep=' ')
temper = temper.melt(id_vars=['Step'], value_vars=['T' + str(i) for i in range(n)], value_name="Run", var_name="Temp")
# temper["Run"] = temper["Run"].str[1:].astype(int)
# temper["Temp"] = "T" + temper["Temp"].astype(str)
t2 = temper.merge(wham, how='inner', left_on=["Step", "Run"], right_on=["Steps", "Run"]
).sort_values('Step').drop('Steps', axis=1)
t3 = t2.merge(dis, how='inner', left_on=["Step", "Run"], right_on=["Steps", "Run"]
).sort_values('Step').drop('Steps', axis=1)
t4 = t3.merge(lipid, how='inner', left_on=["Step", "Run"], right_on=["Steps", "Run"]
).sort_values('Step').drop('Steps', axis=1)
t4 = t4.assign(TotalE = t4.Energy + t4.Lipid)
return t4
In [31]:
dis_list = ["test"]
dic = {"T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000}
for folder in folder_list:
for dis in dis_list:
location = folder + "/simulation/{}/0/".format(dis)
data = read_temper2(location=location, n=12)
temps = list(dic.keys())
for temp in temps:
tmp = data.query('Temp=="{}"& Step > 1e7 & Step <= 2.6e7'.format(temp))
tmp.to_csv(location+"t{}.dat".format(dic[temp]), sep=' ', index=False, header=False)
In [25]:
n= 12
location = "/Users/weilu/Research/server/oct_2017/week_oct09_two/more_higher_temp/simulation/dis_80.0/0/"
data= read_temper(location=location, n=n)
In [32]:
file = "../log.lammps"
location = "/Users/weilu/Research/server/oct_2017/week_oct09_two/more_higher_temp/simulation/dis_80.0/0/"
temper = pd.read_table(location+file, skiprows=2, sep=' ')
temper2 = temper.melt(id_vars=['Step'], value_vars=['T' + str(i) for i in range(n)], value_name="Temp", var_name="Run")
In [37]:
temper.tail()
Out[37]:
In [38]:
temper2.tail()
Out[38]:
In [39]:
file = "../log.lammps"
location = "/Users/weilu/Research/server/oct_2017/week_oct09_two/more_higher_temp/simulation/dis_80.0/0/"
temper = pd.read_table(location+file, skiprows=2, sep=' ')
temper3 = temper.melt(id_vars=['Step'], value_vars=['T' + str(i) for i in range(n)], value_name="Run", var_name="Temp")
In [40]:
temper3.tail()
Out[40]:
In [ ]:
for i in range(12):
fig, axs = plt.subplots(ncols=2, nrows=1, figsize=(10, 4))
tmp = data.query('Run=={}'.format(i))
dic = {"T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000}
tmp = tmp.assign(myT = tmp['Temp'].map(dic))
tmp.plot('Step', 'myT', subplots=True, ax=axs[1])
tmp.plot('Step', 'Qw', subplots=True, ax=axs[0])
In [26]:
for i in range(12):
fig, axs = plt.subplots(ncols=2, nrows=1, figsize=(10, 4))
tmp = data.query('Run=={}'.format(i))
dic = {"T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000}
tmp = tmp.assign(myT = tmp['Temp'].map(dic))
tmp.plot('Step', 'myT', subplots=True, ax=axs[1])
tmp.plot('Step', 'Qw', subplots=True, ax=axs[0])
In [10]:
for i in range(12):
tmp = data.query('Run=={}'.format(i))
dic = {"T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000}
tmp = tmp.assign(myT = tmp['Temp'].map(dic))
tmp.plot('Step', 'myT')
In [32]:
for i in range(12):
fig, axs = plt.subplots(ncols=2, nrows=1, figsize=(10, 4))
tmp = data.query('Run=={}'.format(i))
dic = {"T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000}
tmp = tmp.assign(myT = tmp['Temp'].map(dic))
tmp.plot('Step', 'myT', subplots=True, ax=axs[1])
tmp.plot('Step', 'Qw', subplots=True, ax=axs[0])
In [41]:
list(dic.keys())
Out[41]:
In [43]:
for i in list(dic.keys()):
fig, axs = plt.subplots(ncols=2, nrows=1, figsize=(10, 4))
tmp = data.query('Temp=="{}"'.format(i))
# dic = {"T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000}
# tmp = tmp.assign(myT = tmp['Temp'].map(dic))
tmp.plot('Step', 'Run', subplots=True, ax=axs[1])
tmp.plot('Step', 'Qw', subplots=True, ax=axs[0])
In [11]:
t350 = data.query('Temp=="T0" & Step > 0e7')
t350.plot('Step', 'Run')
t350.plot('Step', 'Qw')
t350.plot('Step', 'Energy')
Out[11]:
In [55]:
test = {k_list=[1],
force_ramp_rate_list=[1],
memb_k_list=[1],
force_list=["ramp"],
rg_list=[0.08],
pressure_list=[0.1],
repeat=1,
mode_list=[2],
commons=0,
temperature_list=[300],
start_from_list=["native"],
simulation_model_list=["go"]}
In [60]:
test = {"k_list":[1], "force":[1]}
In [63]:
for key, value in test.items():
print(key, value)
In [69]:
list(range(10))
Out[69]:
In [74]:
[list(range(10))]
Out[74]:
In [ ]: