In [1]:
import matplotlib as mpl
import matplotlib.pyplot as plt
from scipy.interpolate import griddata
from scipy.interpolate import interp2d
import sys
import argparse
import os
import numpy as np
import pandas as pd
from numpy.random import uniform
import glob
%matplotlib inline
import re
# %matplotlib notebook

In [3]:
location = "/Users/weilu/Research/server/oct_2017/30oct/strengthen_helix_1_baseline_without_strengthen/"
folder_list = glob.glob(pathname=location + "*_")

In [4]:
location = folder_list[0] + "/simulation/0/0/"
i = 0

In [2]:
def read(location):
    file = "lipid.dat"
    lipid = pd.read_csv(location+file)
    lipid.columns = lipid.columns.str.strip()

    file = "energy.dat"
    energy = pd.read_csv(location+file)
    energy.columns = energy.columns.str.strip()
    file = "addforce.dat"
    dis = pd.read_csv(location+file)
    dis.columns = dis.columns.str.strip()
#     remove_columns = ['AddedForce', 'Dis12', 'Dis34', 'Dis56']
    file = "rgs.dat"
    rgs = pd.read_csv(location+file)
    rgs.columns = rgs.columns.str.strip()
    file = "wham.dat"
    wham = pd.read_csv(location+file)
    wham.columns = wham.columns.str.strip()
    remove_columns = ['Rg', 'Tc']
    wham = wham.drop(remove_columns, axis=1)
    data = wham.merge(rgs, how='inner', left_on=["Steps"], right_on=["Steps"]).\
        merge(dis, how='inner', left_on=["Steps"], right_on=["Steps"]).\
        merge(energy, how='inner', left_on=["Steps"], right_on=["Steps"]).\
        merge(lipid, how='inner', left_on=["Steps"], right_on=["Steps"])
    data = data.assign(TotalE = data.Energy + data.Lipid)
    return data

In [8]:
location = "/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_/simulation/0/0/"

In [10]:
location = "/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_"

In [13]:
glob.glob(location+"/simulation/*")


Out[13]:
['/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_/simulation/17',
 '/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_/simulation/0',
 '/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_/simulation/5',
 '/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_/simulation/19',
 '/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_/simulation/6',
 '/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_/simulation/18',
 '/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_/simulation/15',
 '/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_/simulation/9',
 '/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_/simulation/7',
 '/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_/simulation/8',
 '/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_/simulation/2',
 '/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_/simulation/10',
 '/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_/simulation/1',
 '/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_/simulation/4',
 '/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_/simulation/16',
 '/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_/simulation/11',
 '/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_/simulation/3',
 '/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_/simulation/14',
 '/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_/simulation/13',
 '/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_/simulation/12']

In [23]:
location = "/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling"
test = "pre"

In [24]:
os.path.join(location, test)


Out[24]:
'/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pre'

In [20]:
glob.glob("/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/*_")


Out[20]:
['/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_1.0_',
 '/Users/weilu/Research/server/jan_2018/week_of_jan29/pulling/pressure_0.6_']

In [ ]:


In [9]:
read(location)


Out[9]:
Steps Qw Energy rg1 rg2 rg3 rg4 rg5 rg6 rg_all ... Lipid7 Lipid8 Lipid9 Lipid10 Lipid11 Lipid12 Lipid13 Lipid14 Lipid15 TotalE
0 4000 0.605523 -706.089225 2.971333 2.506001 2.989076 2.505703 3.127377 2.928280 17.027770 ... -1.314062e+00 -7.191582e-01 2.063945e-01 -1.261580e+00 3.844211e-01 -1.624016e+00 -1.099269e+00 -1.654170e+00 -1.521931e+00 -715.505150
1 8000 0.521618 -576.526478 4.427032 2.652856 2.779439 4.056813 2.643611 4.861577 21.421328 ... -1.994911e+00 -1.835687e+00 1.010438e-01 -1.457990e+00 8.516464e-01 -2.025393e+00 -1.771873e+00 -2.095627e+00 -1.978071e-01 -584.823534
2 12000 0.434210 -531.921294 3.085481 3.139975 2.603010 2.806233 2.000906 4.075208 17.710813 ... -1.578409e+00 -1.862330e+00 4.115545e-01 -1.365978e+00 1.433982e-01 -2.049466e+00 -1.457151e+00 -2.146032e+00 7.825909e-02 -541.065596
3 16000 0.392817 -523.464047 4.869685 4.354001 2.148360 2.894114 2.937320 4.762745 21.966224 ... -1.714313e+00 -1.447852e+00 1.520573e-01 -1.623861e+00 2.656447e-01 -2.097240e+00 -1.809386e+00 -2.111353e+00 -1.428096e+00 -535.639692
4 20000 0.268171 -532.780824 5.904846 5.554420 3.527865 2.606776 2.179527 3.919218 23.692652 ... -1.337142e+00 -1.465566e+00 5.426140e-01 -1.408712e+00 7.290164e-01 -1.731467e+00 -7.473931e-01 -1.823134e+00 8.001810e-01 -540.254506
5 24000 0.224002 -483.819315 7.465344 3.589320 2.032671 2.735016 2.781180 3.777651 22.381181 ... -1.582437e+00 -3.091500e-01 6.720490e-01 -1.575209e+00 5.449492e-01 -1.421398e+00 -9.158980e-01 -1.171139e+00 -1.703539e-01 -490.568577
6 28000 0.206016 -470.742749 10.485480 6.799943 2.143892 4.104524 2.421759 3.421639 29.377237 ... -5.566743e-01 -1.531842e-01 9.236959e-01 -1.468587e+00 7.040467e-01 -1.509538e+00 -1.700736e+00 -2.323514e+00 -6.658174e-02 -477.697485
7 32000 0.214597 -442.097919 10.482745 6.570905 3.069912 3.225368 1.988731 6.401304 31.738965 ... 2.053859e-01 1.690645e-01 7.195497e-01 -1.349142e+00 5.931442e-01 -1.231893e+00 -1.000315e+00 -1.670030e+00 5.662274e-01 -445.359742
8 36000 0.205102 -450.193016 0.009245 10.973593 3.941796 1.694883 2.475972 4.380391 23.475880 ... 2.825598e-01 -6.579399e-01 2.603111e-01 -1.384816e+00 -9.132165e-02 -1.355693e+00 -1.618602e+00 -1.626969e+00 7.510265e-01 -454.996062
9 40000 0.178305 -499.645211 1.117327 0.011825 4.016656 3.783312 2.495777 3.608206 15.033103 ... 8.244950e-03 3.024264e-02 -6.287494e-06 -1.716921e+00 1.000652e-01 -1.860669e+00 -1.209914e+00 -2.117613e+00 7.652931e-01 -505.643790
10 44000 0.157617 -431.911533 0.544625 1.436070 6.228645 1.640464 2.033787 4.046443 15.930034 ... 3.314557e-02 3.281362e-01 -5.209290e-05 -8.111628e-01 -2.045443e-01 -3.604212e-01 -4.598957e-01 -3.221450e-01 7.319608e-01 -432.893095
11 48000 0.154223 -412.865533 0.001230 0.748056 2.659902 1.269196 2.617134 4.431037 11.726555 ... -2.932168e-05 -4.229925e-05 -4.195010e-05 -1.258705e+00 -1.037020e+00 -1.122530e+00 -1.353512e+00 -1.406619e+00 5.657694e-01 -418.478311
12 52000 0.194215 -432.368311 0.004064 0.381551 4.472626 4.195373 2.283805 2.603729 13.941149 ... -2.958567e-05 -3.341436e-05 -3.259723e-05 -1.664230e+00 1.643950e-01 -1.714690e+00 -1.557484e+00 -2.119403e+00 6.452359e-01 -438.614617
13 56000 0.167370 -467.280680 0.531261 0.860564 5.882188 3.058807 3.158626 8.154664 21.646110 ... -3.591807e-05 -5.154449e-05 -4.993860e-05 -1.245267e+00 2.060680e-02 -1.277845e+00 -1.204823e+00 -1.291788e+00 4.962861e-01 -471.783850
14 60000 0.171676 -457.362285 0.775504 0.197708 3.050731 2.998801 2.193077 5.385486 14.601307 ... -1.216874e-05 -1.724305e-05 -1.648147e-05 -1.000305e+00 8.043815e-01 -1.243794e+00 -1.261792e+00 -1.615401e+00 4.143792e-01 -461.250924
15 64000 0.129564 -455.899339 0.453054 4.667282 6.323842 1.950546 1.973601 5.215685 20.584010 ... -3.861029e-05 -4.163901e-05 -4.463236e-05 -1.619645e+00 7.553268e-01 -8.955813e-02 -4.189513e-01 1.285208e-01 1.887592e-01 -456.955183
16 68000 0.118748 -424.199378 0.051152 1.846314 4.752938 2.212069 2.132114 4.122096 15.116684 ... 2.136708e-02 -4.219529e-05 -4.260735e-05 -2.008644e+00 7.969125e-01 8.215117e-01 -4.352005e-01 9.107069e-01 -9.466205e-01 -424.975922
17 72000 0.097463 -395.662506 0.474664 0.743340 2.619599 1.494837 3.367381 9.427392 18.127213 ... -2.081277e-05 -2.805086e-05 -2.923801e-05 5.487681e-01 -1.711105e-01 -1.590766e-04 -7.521814e-01 -1.152056e-04 -1.552708e-04 -395.902586
18 76000 0.079726 -385.836673 0.265468 1.247535 7.639218 1.982321 4.011546 4.585412 19.731500 ... -3.310414e-05 -3.353357e-05 -1.689196e-05 -1.009080e+00 5.097281e-01 -7.760033e-05 7.284993e-02 -7.719227e-05 1.051544e-01 -386.153136
19 80000 0.082825 -460.377700 0.510066 0.323909 3.647659 2.310313 0.202734 0.259791 7.254473 ... -2.101406e-06 -6.402860e-07 -6.490760e-07 2.253189e-01 -1.319338e-05 -1.337450e-05 4.161742e-02 -7.753718e-06 -2.362512e-06 -460.096962
20 84000 0.074834 -445.340239 0.156557 3.870815 4.113280 2.891618 0.001348 1.618739 12.652357 ... -1.987889e-05 -5.754817e-07 -1.751743e-05 1.573201e-03 -2.955190e-07 -8.995480e-06 -3.356892e-07 -1.021825e-05 -2.958119e-07 -445.297605
21 88000 0.061079 -472.164473 0.370820 0.010164 0.000331 0.019035 0.003944 0.011192 0.415486 ... -9.420122e-08 -2.619081e-08 -6.100975e-08 -2.504541e-08 -6.963385e-09 -1.622074e-08 -1.949443e-07 -4.541098e-07 -1.262564e-07 -472.164477
22 92000 0.059888 -436.740870 0.106972 0.000533 0.000010 0.000004 0.274796 0.072072 0.454388 ... -9.078588e-10 -2.245749e-07 -1.292430e-07 -1.275369e-10 -3.154850e-08 -1.815619e-08 -2.302587e-08 -1.325141e-08 -3.277970e-06 -436.740879
23 96000 0.053015 -363.810209 0.049148 0.005739 0.000327 0.000045 0.211932 0.157670 0.424861 ... -4.795967e-09 -2.675093e-07 -1.798861e-07 -2.139556e-09 -1.193401e-07 -8.025001e-08 -7.331578e-08 -4.930105e-08 -2.749913e-06 -363.810216
24 100000 0.056999 -438.608698 0.313780 0.014519 0.001381 0.016034 1.993329 0.483549 2.822592 ... -1.777514e-07 -1.890745e-06 -1.007205e-06 -8.151403e-08 -8.670662e-07 -4.618886e-07 -3.503357e-06 -1.866248e-06 -1.985132e-05 -438.608747
25 104000 0.054358 -376.363834 0.907567 0.484624 0.010172 0.002446 1.691622 0.010475 3.106906 ... -5.546658e-07 -9.413527e-06 -7.841650e-07 -1.095188e-07 -1.858702e-06 -1.548335e-07 -1.088919e-06 -9.070906e-08 -1.539471e-06 -376.363876
26 108000 0.056972 -446.009427 0.919876 1.290963 0.063762 0.056530 0.220128 0.048543 2.599803 ... -5.299869e-06 -7.620442e-06 -3.697830e-06 -9.089522e-07 -1.306941e-06 -6.341951e-07 -2.100899e-06 -1.019464e-06 -1.465841e-06 -446.009490
27 112000 0.056590 -430.409890 0.653910 5.606035 0.025193 0.080237 0.053235 0.086021 6.504632 ... -6.205186e-06 -8.262158e-06 -7.493210e-06 -5.244446e-07 -6.982941e-07 -6.333048e-07 -1.718114e-06 -1.558212e-06 -2.074747e-06 -430.409948
28 116000 0.050431 -436.252409 0.118186 0.793998 0.000914 0.804989 1.278934 0.258982 3.256003 ... -5.375046e-06 -6.362722e-06 -2.889447e-06 -3.705414e-07 -4.386292e-07 -1.991908e-07 -1.297559e-05 -5.892492e-06 -6.975250e-06 -436.252467
29 120000 0.048265 -400.923946 0.296649 0.011566 0.005065 0.018192 0.008569 0.003642 0.343682 ... -1.229268e-07 -2.377467e-07 -7.215056e-08 -9.180498e-08 -1.775555e-07 -5.388394e-08 -1.619362e-07 -4.914386e-08 -9.504670e-08 -400.923952
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
9970 39884000 0.000974 555.063110 1.445389 0.099303 0.075734 0.015585 0.007140 0.026103 1.669254 ... -2.901203e-07 -3.395945e-07 -3.231753e-07 -2.040966e-07 -2.389013e-07 -2.273505e-07 -1.205164e-07 -1.146895e-07 -1.342475e-07 555.063101
9971 39888000 0.000924 593.117453 0.355079 1.110775 0.241112 0.020634 0.014989 0.058146 1.800735 ... -1.299431e-06 -1.116728e-06 -1.364847e-06 -6.454335e-07 -5.546839e-07 -6.779258e-07 -2.564157e-07 -3.133871e-07 -2.693241e-07 593.117435
9972 39892000 0.000879 600.870793 0.195504 0.095212 0.200088 0.041085 0.064002 0.252554 0.848445 ... -5.941536e-07 -8.332737e-07 -1.435794e-06 -7.941966e-07 -1.113825e-06 -1.919205e-06 -6.032380e-07 -1.039425e-06 -1.457746e-06 600.870778
9973 39896000 0.000896 634.610384 0.187960 0.135886 0.045654 0.187082 0.115878 1.428964 2.101422 ... -8.967406e-07 -8.105046e-07 -2.332657e-06 -4.960912e-07 -4.483841e-07 -1.290463e-06 -1.386091e-06 -3.989213e-06 -3.605586e-06 634.610362
9974 39900000 0.000854 606.926523 0.466468 0.012855 0.004964 0.000866 0.004122 0.251794 0.741069 ... -2.321946e-08 -6.521616e-08 -4.276891e-07 -1.091580e-08 -3.065904e-08 -2.010627e-07 -1.689901e-08 -1.108241e-07 -3.112699e-07 606.926518
9975 39904000 0.000937 691.651317 0.014114 0.009631 0.028518 0.038912 0.125359 0.189895 0.406429 ... -1.716321e-07 -3.282846e-07 -2.707993e-07 -3.316442e-07 -6.343434e-07 -5.232646e-07 -1.052024e-06 -8.678057e-07 -1.659872e-06 691.651309
9976 39908000 0.001081 591.929251 0.521848 0.490232 0.366990 0.070760 0.003201 0.091232 1.544263 ... -1.186829e-06 -4.080461e-07 -1.272785e-06 -1.043186e-06 -3.586599e-07 -1.118738e-06 -1.431410e-07 -4.464881e-07 -1.535080e-07 591.929232
9977 39912000 0.000973 603.788474 0.200524 0.205420 0.159733 0.373438 0.618872 0.972327 2.530315 ... -1.785177e-06 -2.561040e-06 -2.542928e-06 -1.014142e-06 -1.454902e-06 -1.444613e-06 -5.065123e-06 -5.029301e-06 -7.215108e-06 603.788434
9978 39916000 0.000949 643.912878 0.401708 0.599594 0.045366 0.169284 0.361916 0.083175 1.661042 ... -1.481853e-06 -1.927307e-06 -1.435085e-06 -5.410729e-07 -7.037229e-07 -5.239966e-07 -1.226536e-06 -9.132869e-07 -1.187827e-06 643.912859
9979 39920000 0.000964 564.250992 0.882123 0.302986 0.039645 0.038084 0.483927 0.092776 1.839541 ... -4.675212e-07 -3.305344e-06 -1.132839e-06 -1.974741e-07 -1.396129e-06 -4.784945e-07 -9.191117e-07 -3.150066e-07 -2.227076e-06 564.250969
9980 39924000 0.001016 575.565568 0.022521 0.074319 0.208906 0.031250 0.021772 0.049574 0.408342 ... -3.058071e-07 -3.524165e-07 -3.073767e-07 -4.894366e-07 -5.640338e-07 -4.919487e-07 -3.298689e-07 -2.877107e-07 -3.315620e-07 575.565563
9981 39928000 0.000933 616.882675 0.142265 0.763488 0.472599 0.384012 0.294803 0.503258 2.560425 ... -4.026908e-06 -4.480770e-06 -4.144794e-06 -2.258493e-06 -2.513042e-06 -2.324610e-06 -3.167418e-06 -2.929920e-06 -3.260143e-06 616.882636
9982 39932000 0.001024 636.612325 1.379204 1.298707 0.072117 2.852869 0.414880 0.377613 6.395390 ... -6.882561e-06 -3.908725e-06 -2.746536e-06 -2.421537e-06 -1.375232e-06 -9.663316e-07 -6.594812e-06 -4.633963e-06 -2.631707e-06 636.612268
9983 39936000 0.000938 575.003000 0.064986 0.009217 0.028631 0.013092 0.047788 0.398359 0.562073 ... -6.770702e-08 -1.227832e-07 -2.092668e-07 -1.521273e-07 -2.758750e-07 -4.701904e-07 -2.030621e-07 -3.460909e-07 -6.276180e-07 575.002996
9984 39940000 0.000899 579.679925 0.236543 0.005648 0.006272 0.019679 0.031518 0.012047 0.311708 ... -4.015770e-08 -9.287561e-08 -3.600235e-08 -5.766135e-08 -1.333575e-07 -5.169479e-08 -1.729489e-07 -6.704202e-08 -1.550529e-07 579.679923
9985 39944000 0.000955 611.552256 3.469527 0.182520 0.052296 0.099040 0.113980 0.062881 3.980244 ... -6.926355e-07 -1.135119e-06 -7.612746e-07 -3.328111e-07 -5.454244e-07 -3.657922e-07 -6.632053e-07 -4.447827e-07 -7.289279e-07 611.552234
9986 39948000 0.001002 588.972226 0.609957 0.371655 0.136711 0.117773 0.357372 0.140937 1.734404 ... -1.971194e-06 -3.185494e-06 -1.681177e-06 -8.269547e-07 -1.336378e-06 -7.052870e-07 -1.977742e-06 -1.043774e-06 -1.686762e-06 588.972198
9987 39952000 0.000989 544.521970 0.899024 0.166924 0.070000 0.027183 0.160276 0.072830 1.396237 ... -5.087248e-07 -1.541325e-06 -5.468897e-07 -3.916844e-07 -1.186719e-06 -4.210689e-07 -7.743290e-07 -2.747457e-07 -8.324197e-07 544.521952
9988 39956000 0.000967 560.727214 0.097059 0.023778 0.050703 0.009884 0.007302 0.022849 0.211574 ... -9.667260e-08 -1.609023e-07 -1.735012e-07 -1.014631e-07 -1.688757e-07 -1.820990e-07 -7.264034e-08 -7.832819e-08 -1.303698e-07 560.727211
9989 39960000 0.000920 620.098458 0.230487 0.008539 0.006584 0.002130 0.003320 0.112534 0.363594 ... -2.826904e-08 -4.358448e-08 -1.653428e-07 -1.634558e-08 -2.520119e-08 -9.560368e-08 -2.322434e-08 -8.810425e-08 -1.358369e-07 620.098455
9990 39964000 0.000947 652.905359 0.534510 0.491195 0.273437 0.432647 0.737068 0.446561 2.915417 ... -2.871572e-06 -5.071469e-06 -2.907378e-06 -2.225591e-06 -3.930604e-06 -2.253342e-06 -4.634120e-06 -2.656654e-06 -4.691904e-06 652.905311
9991 39968000 0.001001 574.924305 0.302337 0.217323 0.042111 0.024646 0.010274 0.157223 0.753914 ... -4.171320e-07 -3.934289e-07 -9.333082e-07 -2.633481e-07 -2.483837e-07 -5.892260e-07 -1.842057e-07 -4.369802e-07 -4.121493e-07 574.924296
9992 39972000 0.001049 617.589152 0.461075 1.185204 0.170364 0.051610 0.420151 0.451700 2.740104 ... -1.616773e-06 -3.095966e-06 -3.667791e-06 -3.490767e-07 -6.684486e-07 -7.919111e-07 -9.827705e-07 -1.164288e-06 -2.229501e-06 617.589130
9993 39976000 0.000959 588.823700 0.597000 0.103129 0.118964 0.158201 0.083078 0.059269 1.119641 ... -8.798169e-07 -6.867016e-07 -5.229542e-07 -9.635214e-07 -7.520333e-07 -5.727073e-07 -1.111098e-06 -8.461511e-07 -6.604252e-07 588.823683
9994 39980000 0.001059 550.637308 0.813230 0.034491 0.031537 0.012646 0.094439 0.214458 1.200802 ... -1.388372e-07 -4.316501e-07 -4.508324e-07 -1.287396e-07 -4.002563e-07 -4.180435e-07 -3.040602e-07 -3.175725e-07 -9.873448e-07 550.637297
9995 39984000 0.000979 573.739760 0.065132 0.010357 0.017550 0.054231 0.032957 0.032408 0.212636 ... -1.481463e-07 -1.484032e-07 -1.155926e-07 -2.850912e-07 -2.855856e-07 -2.224452e-07 -4.613385e-07 -3.593407e-07 -3.599639e-07 573.739756
9996 39988000 0.000983 628.844231 0.427440 0.272111 0.033685 0.712584 0.988798 0.194138 2.628755 ... -2.153324e-06 -3.478671e-06 -1.679585e-06 -7.785380e-07 -1.257720e-06 -6.072570e-07 -4.714821e-06 -2.276428e-06 -3.677545e-06 628.844199
9997 39992000 0.000918 549.283212 0.478104 0.138807 0.034740 0.026950 0.031393 0.111889 0.821883 ... -2.553237e-07 -3.243529e-07 -4.822460e-07 -2.166797e-07 -2.752612e-07 -4.092567e-07 -3.226639e-07 -4.797347e-07 -6.094357e-07 549.283203
9998 39996000 0.000984 631.947237 0.072475 0.015354 0.004901 0.168366 0.180337 0.269325 0.710759 ... -3.046514e-07 -3.899871e-07 -4.261085e-07 -1.801030e-07 -2.305516e-07 -2.519057e-07 -1.447101e-06 -1.581134e-06 -2.024025e-06 631.947228
9999 40000000 0.000939 628.185389 0.068842 0.001448 0.001141 0.001940 0.004542 0.242668 0.320581 ... -1.193352e-08 -2.179646e-08 -1.156408e-07 -1.334752e-08 -2.437911e-08 -1.293430e-07 -3.575961e-08 -1.897221e-07 -3.465255e-07 628.185387

10000 rows × 44 columns


In [11]:
pre = "/Users/weilu/Research/server/nov_2017/20nov/force_ramp/"
glob.glob(pre+"*_")


Out[11]:
['/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.4_memb_k_2_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.1_memb_k_1_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.2_memb_k_0_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.0_memb_k_2_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.2_memb_k_4_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.4_memb_k_8_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.4_memb_k_4_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.8_memb_k_2_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.8_memb_k_4_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.3_memb_k_0_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.2_memb_k_2_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.8_memb_k_8_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.8_memb_k_1_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.0_memb_k_0_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.0_memb_k_1_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.1_memb_k_4_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.0_memb_k_4_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.3_memb_k_8_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.1_memb_k_0_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.3_memb_k_1_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.1_memb_k_2_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.3_memb_k_4_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.1_memb_k_8_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.2_memb_k_1_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.0_memb_k_8_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.2_memb_k_8_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.8_memb_k_0_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.3_memb_k_2_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.4_memb_k_0_',
 '/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.4_memb_k_1_']

In [59]:
test = "/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.4_memb_k_1_"

In [62]:
test.split("/")[-1].split("_")


Out[62]:
['rg', '0.4', 'memb', 'k', '1', '']

In [51]:
print(re.findall(r'\d+', "11"))


['11']

In [54]:
os.path.join("/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.4_memb_k_2_", "test")


Out[54]:
'/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.4_memb_k_2_/test'

In [40]:
os.listdir(path)


Out[40]:
['0', '5', '6', 'test_11', '9', '7', '8', '2', '1', '4', '11_test', '11', '3']

In [63]:
pre


Out[63]:
'/Users/weilu/Research/server/nov_2017/20nov/force_ramp/'

In [58]:
location = "/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.0_memb_k_1_/simulation"
glob.glob(location + "[0-9]")
run_list = [f for f in os.listdir(location) if re.search(r'^\d+$', f)]
for f in res:
    print(f)


0
5
6
9
7
8
2
1
4
3

In [64]:
def read_data(pre):
    folder_list = glob.glob(pre+"*_")
    all_data_list = []
    for folder in folder_list:
        print(folder)
        location = os.path.join(folder, "simulation")
        run_list = [f for f in os.listdir(location) if re.search(r'^\d+$', f)]
        for i in run_list:
            data = read(folder + "/simulation/{}/0/".format(i))
            tmp = folder.split("/")[-1]
            _,rg,_,_,memb,_ = tmp.split("_")
            data = data.assign(Run = i, folder=tmp, rg=rg, memb=memb)
            all_data_list.append(data)
    data = pd.concat(all_data_list)
    data.reset_index(drop=True).to_feather("/Users/weilu/Research/data/pulling/nov23.feather")

In [66]:
def read_data(pre):
    folder_list = glob.glob(pre+"*_")
    all_data_list = []
    for folder in folder_list:
        print(folder)
        location = os.path.join(folder, "simulation")
        run_list = [f for f in os.listdir(location) if re.search(r'^\d+$', f)]
        for i in run_list:
            data = read(folder + "/simulation/{}/0/".format(i))
            tmp = folder.split("/")[-1]
            _,rg,_,memb,_ = tmp.split("_")
            data = data.assign(Run = i, folder=tmp, rg=rg, memb=memb)
            all_data_list.append(data)
    data = pd.concat(all_data_list)

In [67]:
pre = "/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/"

In [68]:
read_data(pre)


/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.4_mem_0_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.4_mem_4_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.1_mem_0_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.8_mem_8_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.8_mem_1_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.2_mem_8_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.0_mem_2_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.3_mem_2_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.2_mem_2_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.8_mem_4_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.2_mem_4_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.1_mem_2_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.3_mem_1_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.4_mem_1_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.3_mem_8_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.2_mem_0_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.3_mem_0_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.1_mem_1_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.8_mem_2_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.0_mem_0_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.1_mem_8_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.0_mem_4_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.0_mem_1_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.1_mem_4_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.2_mem_1_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.4_mem_2_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.3_mem_4_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.8_mem_0_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.0_mem_8_
/Users/weilu/Research/server/nov_2017/20nov/slower_ramp/rg_0.4_mem_8_

In [8]:
data.columns


Out[8]:
Index(['Steps', 'Qw', 'Energy', 'rg1', 'rg2', 'rg3', 'rg4', 'rg5', 'rg6',
       'rg_all', 'Distance', 'AddedForce', 'Dis12', 'Dis34', 'Dis56', 'Chain',
       'Chi', 'Rama', 'Water', 'Helix', 'AMH-Go', 'Frag_Mem', 'Membrane',
       'VTotal', 'Ebond', 'Epair', 'Rg', 'Lipid', 'Lipid1', 'Lipid2', 'Lipid3',
       'Lipid4', 'Lipid5', 'Lipid6', 'Lipid7', 'Lipid8', 'Lipid9', 'Lipid10',
       'Lipid11', 'Lipid12', 'Lipid13', 'Lipid14', 'Lipid15', 'TotalE'],
      dtype='object')

In [7]:
location = "/Users/weilu/Research/server/nov_2017/20nov/force_ramp/rg_0.0_memb_k_0_/simulation/0/0/"
data = read(location)
data


Out[7]:
Steps Qw Energy rg1 rg2 rg3 rg4 rg5 rg6 rg_all ... Lipid7 Lipid8 Lipid9 Lipid10 Lipid11 Lipid12 Lipid13 Lipid14 Lipid15 TotalE
0 4000 0.599645 -673.687747 0 0 0 0 0 0 0 ... -2.613143e+00 -2.664568e+00 -1.937897e+00 -2.384366e+00 -2.404665e+00 -1.986632e+00 -2.716796e+00 -2.226672e+00 -2.640122e+00 -717.007513
1 8000 0.562176 -592.244939 0 0 0 0 0 0 0 ... -2.355369e+00 -2.066585e+00 -1.171129e+00 -2.420379e+00 -2.261820e+00 -1.441138e+00 -2.080545e+00 -1.755354e+00 -2.211654e+00 -627.556802
2 12000 0.545994 -583.217063 0 0 0 0 0 0 0 ... -2.713268e+00 -2.477195e+00 -2.022521e+00 -2.430921e+00 -2.164810e+00 -1.317190e+00 -2.564361e+00 -2.161517e+00 -2.538195e+00 -626.103240
3 16000 0.576203 -576.234338 0 0 0 0 0 0 0 ... -2.632716e+00 -2.545546e+00 -2.054824e+00 -2.654586e+00 -2.661304e+00 -2.229399e+00 -2.682591e+00 -1.758258e+00 -2.689982e+00 -623.449567
4 20000 0.588449 -555.260750 0 0 0 0 0 0 0 ... -2.634605e+00 -2.660945e+00 -2.226253e+00 -2.499769e+00 -2.462223e+00 -2.396159e+00 -1.744169e+00 -1.551161e+00 -1.895916e+00 -600.842822
5 24000 0.487176 -565.526400 0 0 0 0 0 0 0 ... -2.432745e+00 -2.628329e+00 -1.642053e+00 -2.696311e+00 -2.476363e+00 -2.298036e+00 -2.705145e+00 -2.141263e+00 -2.310903e+00 -607.641671
6 28000 0.435166 -496.631531 0 0 0 0 0 0 0 ... -2.189096e+00 -2.360557e+00 -3.561515e-01 -2.523794e+00 -2.555132e+00 -1.319571e+00 -2.586414e+00 -1.095986e+00 -2.178119e+00 -525.064448
7 32000 0.458499 -522.491323 0 0 0 0 0 0 0 ... -2.700985e+00 -2.550394e+00 -1.918640e+00 -2.542970e+00 -2.363271e+00 -1.940697e+00 -2.698478e+00 -1.698682e+00 -2.666144e+00 -558.485115
8 36000 0.399905 -553.151596 0 0 0 0 0 0 0 ... -2.300199e+00 -2.708468e+00 -9.434452e-01 -2.471776e+00 -2.519669e+00 -1.424989e+00 -2.650777e+00 -1.589835e+00 -1.044422e+00 -583.252448
9 40000 0.498324 -520.262296 0 0 0 0 0 0 0 ... -2.287263e+00 -2.286505e+00 -1.290002e+00 -2.715502e+00 -2.342327e+00 -1.697892e+00 -2.493116e+00 -1.892396e+00 -2.324125e+00 -562.599497
10 44000 0.538669 -597.791487 0 0 0 0 0 0 0 ... -2.260398e+00 -1.886617e+00 -6.296895e-01 -2.715900e+00 -2.385864e+00 -1.679295e+00 -2.531566e+00 -1.128389e+00 -2.119971e+00 -638.648448
11 48000 0.473366 -473.141271 0 0 0 0 0 0 0 ... -2.571775e+00 -2.680074e+00 -9.285812e-01 -2.695588e+00 -2.274239e+00 -2.258886e+00 -2.270990e+00 -7.993736e-01 -1.068416e+00 -508.877654
12 52000 0.466906 -536.553393 0 0 0 0 0 0 0 ... -2.709847e+00 -2.539165e+00 2.876213e-01 -2.702350e+00 -2.243691e+00 -2.893487e-01 -2.544933e+00 3.816480e-01 -9.467016e-01 -571.447981
13 56000 0.377962 -509.061310 0 0 0 0 0 0 0 ... -2.180069e+00 -2.614224e+00 -9.392799e-03 -2.181672e+00 -2.644337e+00 -9.198200e-03 -2.316665e+00 -8.034215e-03 -9.364388e-03 -544.224780
14 60000 0.313214 -579.271633 0 0 0 0 0 0 0 ... -2.564139e+00 2.213976e-01 -9.601959e-03 -2.653814e+00 7.833292e-01 -9.458022e-03 8.256995e-01 -9.524841e-03 -8.950281e-03 -604.387918
15 64000 0.279662 -431.659204 0 0 0 0 0 0 0 ... -1.832323e+00 -9.538855e-03 -9.566404e-03 -2.706703e+00 -9.519092e-03 -9.546584e-03 -9.549598e-03 -9.577178e-03 -9.530983e-03 -454.399573
16 68000 0.189760 -469.465140 0 0 0 0 0 0 0 ... 4.799799e-01 -9.543663e-03 -9.536312e-03 2.039498e-01 -9.521556e-03 -9.514222e-03 -9.584057e-03 -9.576675e-03 -9.559247e-03 -480.482889
17 72000 0.126068 -408.770462 0 0 0 0 0 0 0 ... -9.555292e-03 -9.535491e-03 -9.544178e-03 -9.546114e-03 -9.526332e-03 -9.535011e-03 -9.574113e-03 -9.582835e-03 -9.562977e-03 -415.432064
18 76000 0.091728 -428.763322 0 0 0 0 0 0 0 ... -9.041066e-03 -9.576327e-03 -9.575442e-03 -8.086672e-03 -8.565429e-03 -8.564638e-03 -9.068570e-03 -9.067732e-03 -9.604571e-03 -426.782900
19 80000 0.070420 -373.589074 0 0 0 0 0 0 0 ... -9.538491e-03 -9.251640e-03 -8.901002e-03 -9.281725e-03 -9.002595e-03 -8.661396e-03 -9.303209e-03 -8.950616e-03 -8.681445e-03 -372.842525
20 84000 0.067471 -474.774813 0 0 0 0 0 0 0 ... -9.552994e-03 -9.531884e-03 -9.373546e-03 -9.560965e-03 -9.539837e-03 -9.381368e-03 -9.584164e-03 -9.424958e-03 -9.404131e-03 -474.029684
21 88000 0.052481 -395.494148 0 0 0 0 0 0 0 ... -9.546795e-03 -9.408829e-03 -8.993813e-03 -9.572667e-03 -9.434327e-03 -9.018186e-03 -9.408301e-03 -8.993308e-03 -8.863340e-03 -395.653406
22 92000 0.044287 -307.775940 0 0 0 0 0 0 0 ... -9.582859e-03 -9.284209e-03 -9.295583e-03 -9.553246e-03 -9.255519e-03 -9.266858e-03 -9.272435e-03 -9.283794e-03 -8.994464e-03 -307.958000
23 96000 0.039573 -381.164646 0 0 0 0 0 0 0 ... -9.141950e-03 -9.129835e-03 -7.919700e-03 -8.057733e-03 -8.047056e-03 -6.980440e-03 -8.807124e-03 -7.639763e-03 -7.629639e-03 -381.330977
24 100000 0.040094 -306.890179 0 0 0 0 0 0 0 ... -3.828718e-03 -3.193541e-03 -1.829882e-03 -3.410118e-03 -2.844386e-03 -1.629818e-03 -1.393970e-03 -7.987377e-04 -6.662285e-04 -306.976248
25 104000 0.037184 -289.371286 0 0 0 0 0 0 0 ... -3.523524e-03 -4.262134e-03 -3.804462e-04 -2.805866e-03 -3.394040e-03 -3.029584e-04 -1.603731e-03 -1.431521e-04 -1.731600e-04 -289.449995
26 108000 0.037526 -262.940010 0 0 0 0 0 0 0 ... -2.737578e-04 -2.799659e-03 -2.566376e-04 -1.842168e-04 -1.883944e-03 -1.726963e-04 -1.064790e-04 -9.760656e-06 -9.982002e-05 -262.984284
27 112000 0.035712 -321.689056 0 0 0 0 0 0 0 ... -2.916084e-03 -8.992064e-04 -9.617407e-04 -2.370792e-03 -7.310594e-04 -7.819001e-04 -7.784026e-04 -8.325358e-04 -2.567215e-04 -321.743445
28 116000 0.033869 -293.326972 0 0 0 0 0 0 0 ... -1.735248e-03 -4.025764e-03 -3.834881e-03 -8.744813e-04 -2.028791e-03 -1.932595e-03 -8.944918e-04 -8.520792e-04 -1.976818e-03 -293.390629
29 120000 0.025769 -184.924842 0 0 0 0 0 0 0 ... -2.584185e-03 -4.464367e-04 -4.723634e-04 -3.688873e-03 -6.372795e-04 -6.742894e-04 -3.636222e-04 -3.847395e-04 -6.646654e-05 -184.980856
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
220 884000 0.001470 459.982843 0 0 0 0 0 0 0 ... -8.090877e-19 -1.142248e-18 -1.836890e-17 -9.927265e-20 -1.401504e-19 -2.253809e-18 -1.102713e-19 -1.773312e-18 -2.503514e-18 459.982843
221 888000 0.001302 470.306143 0 0 0 0 0 0 0 ... -2.057114e-19 -7.374927e-20 -8.883332e-20 -7.251976e-19 -2.599895e-19 -3.131655e-19 -3.857071e-20 -4.645963e-20 -1.665617e-20 470.306143
222 892000 0.001317 449.961667 0 0 0 0 0 0 0 ... -1.491354e-18 -3.153568e-19 -3.979884e-19 -1.755820e-18 -3.712797e-19 -4.685646e-19 -2.272246e-19 -2.867633e-19 -6.063800e-20 449.961667
223 896000 0.001401 452.717271 0 0 0 0 0 0 0 ... -1.308580e-18 -3.350903e-18 -2.005724e-18 -5.892315e-19 -1.508855e-18 -9.031436e-19 -5.781136e-19 -3.460370e-19 -8.861026e-19 452.717271
224 900000 0.001258 432.238503 0 0 0 0 0 0 0 ... -5.263667e-18 -7.151423e-18 -1.313611e-17 -3.045740e-18 -4.138061e-18 -7.601006e-18 -3.134092e-18 -5.756864e-18 -7.821499e-18 432.238503
225 904000 0.001429 442.334518 0 0 0 0 0 0 0 ... -4.244624e-17 -6.763960e-17 -2.645130e-16 -2.198811e-17 -3.503884e-17 -1.370237e-16 -2.334978e-16 -9.131217e-16 -1.455092e-15 442.334518
226 908000 0.001285 465.581114 0 0 0 0 0 0 0 ... -3.198335e-16 -2.698503e-16 -9.531493e-17 -1.493343e-15 -1.259965e-15 -4.450375e-16 -3.476667e-15 -1.228008e-15 -1.036096e-15 465.581114
227 912000 0.001325 427.273363 0 0 0 0 0 0 0 ... -5.873892e-17 -7.805530e-17 -9.268088e-17 -6.186866e-16 -8.221425e-16 -9.761911e-16 -2.454505e-16 -2.914417e-16 -3.872827e-16 427.273363
228 916000 0.001223 484.011660 0 0 0 0 0 0 0 ... -5.009137e-17 -1.034495e-16 -1.057425e-16 -4.470206e-17 -9.231939e-17 -9.436573e-17 -1.015800e-16 -1.038316e-16 -2.144346e-16 484.011660
229 920000 0.001438 446.072145 0 0 0 0 0 0 0 ... -1.748060e-18 -1.174158e-17 -2.591300e-17 -4.477458e-18 -3.007473e-17 -6.637322e-17 -1.840234e-17 -4.061292e-17 -2.727938e-16 446.072145
230 924000 0.001297 491.029168 0 0 0 0 0 0 0 ... -1.615630e-16 -4.892278e-16 -4.548847e-16 -2.658810e-16 -8.051125e-16 -7.485947e-16 -8.835351e-17 -8.215122e-17 -2.487615e-16 491.029168
231 928000 0.001360 458.251103 0 0 0 0 0 0 0 ... -4.124250e-15 -5.129332e-15 -2.977966e-15 -4.131571e-15 -5.138437e-15 -2.983252e-15 -2.373542e-15 -1.378021e-15 -1.713845e-15 458.251103
232 932000 0.001413 494.262910 0 0 0 0 0 0 0 ... -2.130937e-16 -7.816248e-16 -1.045437e-15 -1.363179e-16 -5.000124e-16 -6.687754e-16 -1.296961e-15 -1.734708e-15 -6.362886e-15 494.262910
233 936000 0.001234 414.809555 0 0 0 0 0 0 0 ... -2.222771e-16 -1.099472e-16 -1.409524e-16 -1.236244e-16 -6.114964e-17 -7.839385e-17 -1.865034e-16 -2.390974e-16 -1.182672e-16 414.809555
234 940000 0.001476 456.409077 0 0 0 0 0 0 0 ... -2.941456e-15 -2.388663e-16 -8.596314e-16 -1.615598e-15 -1.311976e-16 -4.721535e-16 -7.295909e-17 -2.625650e-16 -2.132207e-17 456.409077
235 944000 0.001363 515.676856 0 0 0 0 0 0 0 ... -5.565210e-15 -1.077058e-14 -1.897980e-15 -2.652412e-15 -5.133320e-15 -9.045885e-16 -5.981225e-16 -1.054005e-16 -2.039859e-16 515.676856
236 948000 0.001384 470.065144 0 0 0 0 0 0 0 ... -1.769840e-15 -5.740856e-15 -1.356962e-15 -3.500959e-16 -1.135611e-15 -2.684236e-16 -6.164152e-15 -1.457016e-15 -4.726144e-15 470.065144
237 952000 0.001208 504.743868 0 0 0 0 0 0 0 ... -1.854028e-15 -9.474828e-15 -5.997884e-15 -3.851151e-15 -1.968093e-14 -1.245869e-14 -4.868883e-15 -3.082166e-15 -1.575111e-14 504.743868
238 956000 0.001203 442.066972 0 0 0 0 0 0 0 ... -7.592075e-15 -1.736911e-14 -1.365034e-14 -1.366349e-14 -3.125927e-14 -2.456658e-14 -6.110413e-15 -4.802157e-15 -1.098635e-14 442.066972
239 960000 0.001371 470.273090 0 0 0 0 0 0 0 ... -9.382484e-15 -1.192903e-14 -1.078260e-14 -1.102490e-14 -1.401723e-14 -1.267011e-14 -4.238523e-14 -3.831181e-14 -4.871022e-14 470.273090
240 964000 0.001322 462.072438 0 0 0 0 0 0 0 ... -1.959131e-13 -1.050281e-13 -2.457374e-13 -6.581985e-14 -3.528573e-14 -8.255906e-14 -1.044500e-13 -2.443847e-13 -1.310135e-13 462.072438
241 968000 0.001339 479.986911 0 0 0 0 0 0 0 ... -1.604096e-13 -2.800477e-13 -1.198681e-13 -2.618850e-13 -4.572066e-13 -1.956969e-13 -6.682197e-14 -2.860163e-14 -4.993356e-14 479.986911
242 972000 0.001117 460.492171 0 0 0 0 0 0 0 ... -3.604190e-12 -2.141748e-12 -1.568351e-12 -1.128259e-12 -6.704546e-13 -4.909579e-13 -3.296194e-13 -2.413724e-13 -1.434328e-13 460.492171
243 976000 0.001247 427.447255 0 0 0 0 0 0 0 ... -8.433558e-14 -1.883208e-13 -2.558154e-13 -3.345673e-14 -7.470868e-14 -1.014844e-13 -1.985960e-13 -2.697732e-13 -6.024018e-13 427.447255
244 980000 0.001190 506.115565 0 0 0 0 0 0 0 ... -4.666614e-14 -2.490772e-13 -1.869827e-13 -5.119840e-14 -2.732678e-13 -2.051426e-13 -1.048259e-12 -7.869300e-13 -4.200182e-12 506.115565
245 984000 0.001160 438.050411 0 0 0 0 0 0 0 ... -7.784551e-14 -5.744258e-14 -2.133233e-14 -4.433627e-14 -3.271594e-14 -1.214965e-14 -1.331407e-14 -4.944418e-15 -3.648509e-15 438.050411
246 988000 0.001384 453.226138 0 0 0 0 0 0 0 ... -1.322895e-15 -1.040784e-15 -1.228476e-15 -3.465276e-15 -2.726295e-15 -3.217948e-15 -3.522613e-16 -4.157872e-16 -3.271193e-16 453.226138
247 992000 0.001253 529.371684 0 0 0 0 0 0 0 ... -2.553368e-14 -2.140563e-14 -7.083613e-15 -7.149858e-15 -5.993936e-15 -1.983531e-15 -9.995170e-15 -3.307630e-15 -2.772884e-15 529.371684
248 996000 0.001313 493.287785 0 0 0 0 0 0 0 ... -1.246674e-13 -1.916449e-13 -1.398549e-13 -7.223037e-14 -1.110361e-13 -8.102978e-14 -2.235838e-14 -1.631627e-14 -2.508218e-14 493.287785
249 1000000 0.001273 448.856598 0 0 0 0 0 0 0 ... -1.593862e-12 -4.426290e-13 -5.213233e-12 -2.484832e-12 -6.900590e-13 -8.127435e-12 -2.485478e-12 -2.927367e-11 -8.129548e-12 448.856598

250 rows × 44 columns


In [9]:
location = "/Users/weilu/Research/server/nov_2017/06nov/my_configue/study/recompute_offset_0/"
data = read(location)
data.reset_index().to_feather("/Users/weilu/Research/data/pulling/nov08_2.feather")

In [20]:
all_data_list = []
location_list = ["next_gen_lipid_distance"]
pre = "/Users/weilu/Research/server/nov_2017/06nov/"
for location in location_list:
    folder_list = glob.glob(pathname=pre + location + "/*_")
    for folder in folder_list:
        print(folder)
        for i in range(5):
            data = read(folder + "/simulation/{}/0/".format(i))
            tmp = folder.split("/")[-1]
#             _,temp,_,memb,_,rg, _ = tmp.split("_")
            data = data.assign(Run = i, folder=tmp)
            all_data_list.append(data)
data = pd.concat(all_data_list)
data.reset_index().to_feather("/Users/weilu/Research/data/pulling/nov10_lipid_distance.feather")


/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/force_0.61_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/rg_0.2_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/force_0.8_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/rg_0.8_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/rg_1.6_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/rg_0.4_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/force_0.42_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/force_1.2_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/force_0.58_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/force_1.0_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/force_0.71_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/force_0.3_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/force_0.48_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/force_0.7_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/force_0.4_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/force_0.62_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/simulation_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/rg_0.1_

In [25]:
all_data_list = []
location_list = ["next_gen_lipid_distance"]
pre = "/Users/weilu/Research/server/nov_2017/06nov/"
for location in location_list:
    folder_list = glob.glob(pathname=pre + location + "/rg_*_")
    for folder in folder_list:
        print(folder)
        for i in range(5):
            data = read(folder + "/simulation/{}/0/".format(i))
            tmp = folder.split("/")[-1]
#             _,temp,_,memb,_,rg, _ = tmp.split("_")
            data = data.assign(Run = i, folder=tmp)
            all_data_list.append(data)
data = pd.concat(all_data_list)
data.reset_index().to_feather("/Users/weilu/Research/data/pulling/nov10_lipid_distance_rg.feather")


/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/rg_0.2_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/rg_0.8_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/rg_1.61_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/rg_0.11_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/rg_1.6_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/rg_0.4_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/rg_0.81_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/rg_0.21_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/rg_0.41_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/rg_0.1_

In [34]:
all_data_list = []
location_list = ["next_gen_lipid_distance"]
pre = "/Users/weilu/Research/server/nov_2017/06nov/"
for location in location_list:
    folder_list = glob.glob(pathname=pre + location + "/pressure_*_")
    for folder in folder_list:
        print(folder)
        for i in range(5):
            data = read(folder + "/simulation/{}/0/".format(i))
            tmp = folder.split("/")[-1]
            pressure = tmp.split("_")[1]
            rg = tmp.split("_")[3]
#             _,temp,_,memb,_,rg, _ = tmp.split("_")
            data = data.assign(Run = i, folder=tmp, pressure=pressure, rgsize=rg)
            all_data_list.append(data)
data = pd.concat(all_data_list)
data.reset_index().to_feather("/Users/weilu/Research/data/pulling/nov10_lipid_distance_pressure.feather")


/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/pressure_2.0_rg_0.4_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/pressure_2.0_rg_0.2_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/pressure_2.0_rg_0.3_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/pressure_0.8_rg_0.4_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/pressure_0.8_rg_0.2_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/pressure_2.0_rg_0.1_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/pressure_0.8_rg_0.3_
/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/pressure_0.8_rg_0.1_

In [36]:
all_data_list = []
location_list = ["next_gen_lipid_distance"]
pre = "/Users/weilu/Research/server/nov_2017/06nov/"
for location in location_list:
    folder_list = glob.glob(pathname=pre + location + "/tes*")
    for folder in folder_list:
        print(folder)
        for i in range(2):
            data = read(folder + "/recompute_offset_{}/".format(i))
#             _,temp,_,memb,_,rg, _ = tmp.split("_")
            data = data.assign(Run = i, folder=tmp)
            all_data_list.append(data)
data = pd.concat(all_data_list)
data.reset_index().to_feather("/Users/weilu/Research/data/pulling/nov11_lipid_distance.feather")


/Users/weilu/Research/server/nov_2017/06nov/next_gen_lipid_distance/test

In [22]:
all_data_list = []
location_list = ["strengthen_helix_1", "strengthen_helix_1_baseline_without_strengthen"]
pre = "/Users/weilu/Research/server/oct_2017/30oct/"
for location in location_list:
    folder_list = glob.glob(pathname=pre + location + "/*_")
    for folder in folder_list:
        print(folder)
        for i in range(10):
            data = read(folder + "/simulation/{}/0/".format(i), i)
            tmp = folder.split("/")[-1]
            _,temp,_,memb,_,rg, _ = tmp.split("_")
            data = data.assign(Run = i, temp = temp, memb = memb, rg = rg, Location=location)
            all_data_list.append(data)
data = pd.concat(all_data_list)
data.reset_index().to_feather("/Users/weilu/Research/data/pulling/nov01_strengthen")


/Users/weilu/Research/server/oct_2017/30oct/strengthen_helix_1/temp_350_memb_2_rg_0.1_
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-22-a337d0b7386a> in <module>()
      7         print(folder)
      8         for i in range(10):
----> 9             data = read(folder + "/simulation/{}/0/".format(i), i)
     10             tmp = folder.split("/")[-1]
     11             _,temp,_,memb,_,rg, _ = tmp.split("_")

TypeError: read() takes 1 positional argument but 2 were given

In [67]:
all_data_list = []
location_list = ["strengthen_helix_1", "strengthen_helix_1_baseline_without_strengthen"]
pre = "/Users/weilu/Research/server/oct_2017/30oct/"
location = pre + "strengthen_helix_1_baseline_without_strengthen/temp_350_memb_2_rg_0.1_/simulation/0"
for i in range(-10, 15, 1):
    myLocation = location + "/recompute_offset_{}/".format(i)
    file = "lipid.dat"
    lipid = pd.read_csv(myLocation+file)
    lipid.columns = lipid.columns.str.strip()
    lipid = lipid.assign(Run = i)
    all_data_list.append(lipid)
data = pd.concat(all_data_list).reset_index()
tmp = data.query('Steps < 1e6')
results = tmp.filter(items=["Steps", "Run"] +["Lipid"+str(i) for i in range(1,16)]).groupby("Run").mean()

In [68]:
results


Out[68]:
Steps Lipid1 Lipid2 Lipid3 Lipid4 Lipid5 Lipid6 Lipid7 Lipid8 Lipid9 Lipid10 Lipid11 Lipid12 Lipid13 Lipid14 Lipid15
Run
-10 498000 -4.390659 -4.525590 -4.172496 -4.483719 -4.261158 -4.389598 -4.047718 -4.369464 -4.318996 -4.171510 -4.503662 -4.451656 -4.152462 -4.104954 -4.431145
-9 498000 -4.390659 -4.525590 -4.171670 -4.427678 -3.977347 -4.389598 -4.047718 -4.369464 -4.318996 -4.171510 -4.503662 -4.451656 -4.152462 -4.104954 -4.431145
-8 498000 -4.390659 -4.525590 -4.161039 -4.296501 -3.566059 -4.389598 -4.047718 -4.369464 -4.318996 -4.171510 -4.503373 -4.451656 -4.152462 -4.104954 -4.431145
-7 498000 -4.390659 -4.525590 -4.087775 -4.047550 -3.065150 -4.389598 -4.047718 -4.369464 -4.318996 -4.171510 -4.499283 -4.451656 -4.152462 -4.104954 -4.431145
-6 498000 -4.390659 -4.525545 -3.880631 -3.675752 -2.509628 -4.389598 -4.047718 -4.369464 -4.318996 -4.171510 -4.465962 -4.451656 -4.152462 -4.104954 -4.431145
-5 498000 -4.390659 -4.524241 -3.540018 -3.203998 -1.929596 -4.389598 -4.047718 -4.369464 -4.318911 -4.171510 -4.336827 -4.451656 -4.152462 -4.104954 -4.431135
-4 498000 -4.390659 -4.513332 -3.099774 -2.666550 -1.350528 -4.389598 -4.047718 -4.369464 -4.314035 -4.171510 -4.058334 -4.451656 -4.152462 -4.104954 -4.428748
-3 498000 -4.390659 -4.439459 -2.594729 -2.095174 -0.793543 -4.389598 -4.047718 -4.369464 -4.264693 -4.171510 -3.647656 -4.451656 -4.152462 -4.104954 -4.408146
-2 498000 -4.390659 -4.222338 -2.055105 -1.516888 -0.275684 -4.386983 -4.047718 -4.369439 -4.082691 -4.171510 -3.143880 -4.451656 -4.152462 -4.104954 -4.318661
-1 498000 -4.390659 -3.857223 -1.506666 -0.954233 0.189810 -4.333309 -4.047718 -4.367711 -3.753296 -4.171510 -2.582772 -4.451656 -4.152462 -4.104954 -4.096908
0 498000 -4.390659 -3.382514 -0.970981 -0.425560 0.593224 -4.132675 -4.047718 -4.358427 -3.313165 -4.171472 -1.995119 -4.451656 -4.152364 -4.104954 -3.736110
1 498000 -4.388310 -2.836275 -0.465682 0.054697 0.928098 -3.782952 -4.047639 -4.326071 -2.799295 -4.163342 -1.407004 -4.451656 -4.150763 -4.104954 -3.270469
2 498000 -4.348905 -2.251466 -0.004718 0.475738 1.190942 -3.324648 -4.046083 -4.234324 -2.243925 -4.065815 -0.840089 -4.451371 -4.131613 -4.104954 -2.736379
3 498000 -4.174894 -1.656202 0.401381 0.830123 1.380970 -2.795037 -4.027701 -4.031405 -1.674629 -3.813418 -0.311887 -4.447640 -4.035024 -4.104954 -2.165833
4 498000 -3.846127 -1.074037 0.745249 1.113487 1.499815 -2.226405 -3.912785 -3.698105 -1.114582 -3.434594 0.163955 -4.418180 -3.804918 -4.104954 -1.586099
5 498000 -3.402428 -0.524242 1.022423 1.324264 1.551263 -1.646323 -3.653877 -3.256752 -0.582826 -2.967348 0.577375 -4.286023 -3.448277 -4.104661 -1.019995
6 498000 -2.881859 -0.022090 1.231089 1.463412 1.540968 -1.077917 -3.277183 -2.743315 -0.094542 -2.445185 0.921624 -3.997441 -2.998595 -4.095946 -0.486164
7 498000 -2.317481 0.420872 1.371819 1.534125 1.476183 -0.540139 -2.818385 -2.189872 0.338686 -1.896971 1.192980 -3.580044 -2.489674 -4.006829 0.000648
8 498000 -1.737594 0.796535 1.447315 1.541563 1.365479 -0.048042 -2.309472 -1.623819 0.708605 -1.347194 1.390472 -3.073800 -1.950821 -3.763827 0.429326
9 498000 -1.166009 1.099952 1.462151 1.492567 1.218475 0.386952 -1.777962 -1.068136 1.010019 -0.816220 1.515603 -2.513676 -1.406954 -3.394684 0.792101
10 498000 -0.622324 1.329055 1.422513 1.395383 1.045557 0.756777 -1.247151 -0.541665 1.240529 -0.320550 1.572069 -1.929734 -0.878859 -2.937303 1.084286
11 498000 -0.122188 1.484379 1.335942 1.259384 0.857606 1.056454 -0.736369 -0.059372 1.400263 0.126917 1.565480 -1.347409 -0.383447 -2.424818 1.303994
12 498000 0.322420 1.568777 1.211074 1.094787 0.665721 1.283816 -0.261224 0.367375 1.491605 0.516629 1.503080 -0.787779 0.065989 -1.885787 1.451867
13 498000 0.702922 1.587142 1.057384 0.912378 0.480941 1.439239 0.166145 0.730542 1.518933 0.842123 1.393473 -0.267847 0.459516 -1.344452 1.530801
14 498000 1.013869 1.546129 0.884925 0.723230 0.313973 1.525368 0.536812 1.025151 1.488348 1.099765 1.246339 0.199186 0.790305 -0.820990 1.545672

In [77]:
record = []
labels = []
for label, group in results.groupby('Run'):
    helix1 = 0 
    for i in range(1,6):
        helix1 += group["Lipid" +str(i)]
    helix6 = 0
    ii = 0
    for i in range(5,0,-1):
        ii = ii + i
#         print(ii)
        helix6 += group["Lipid" +str(ii)]
    print(float(helix1 - helix6))
    record.append(helix1 - helix6)
    labels.append(label)


-0.26571287066953886
-0.20884646272050844
-0.06703866210396114
0.25517746309661504
0.8341638202453616
1.6477403616257078
2.629078954927973
3.7094264485288146
4.772971698257146
5.698032719479286
6.436171083599824
6.990803305576783
7.40727953443701
7.793466090217336
8.162386551259145
8.413521504449458
8.464644538339973
8.256872144017407
7.747514885478445
6.9948993735737455
6.066849763733545
5.025486292920007
3.927151047958733
2.8223902089395105
1.7559362926168056

In [78]:
record = [float(i) for i in record]

In [79]:
plt.plot(labels, record)


Out[79]:
[<matplotlib.lines.Line2D at 0x117833978>]

In [ ]:
helix1 = 0 
for i in range(1,6):
    helix1 += results["Lipid" +str(i)]

helix6 = 0
ii = 0
for i in range(5,0,-1):
    ii = ii + i
    print(ii)
    helix6 += results["Lipid" +str(ii)]

helix1 - helix6

In [48]:
all_data_list = []
location_list = ["strengthen_helix_1", "strengthen_helix_1_baseline_without_strengthen"]
pre = "/Users/weilu/Research/server/oct_2017/30oct/"
for location in location_list:
    folder_list = glob.glob(pathname=pre + location + "/*_")
    for folder in folder_list:
        print(folder)
        for i in range(10):
            myLocation = folder + "/simulation/{}/recompute_offset_0/".format(i)
            
            file = "lipid.dat"
            lipid = pd.read_csv(myLocation+file)
            lipid.columns = lipid.columns.str.strip()
            tmp = folder.split("/")[-1]
            _,temp,_,memb,_,rg, _ = tmp.split("_")
            lipid = lipid.assign(Run = i, temp = temp, memb = memb, rg = rg, Location=location)
            all_data_list.append(lipid)
data = pd.concat(all_data_list).reset_index()
tmp = data.query('Location=="strengthen_helix_1_baseline_without_strengthen"').query('Steps < 1e6')
results = tmp.filter(items=["Steps"] +["Lipid"+str(i) for i in range(1,16)]).mean()
helix1 = 0 
for i in range(1,6):
    helix1 += results["Lipid" +str(i)]

helix6 = 0
ii = 0
for i in range(5,0,-1):
    ii = ii + i
    print(ii)
    helix6 += results["Lipid" +str(ii)]

helix1 - helix6


/Users/weilu/Research/server/oct_2017/30oct/strengthen_helix_1/temp_350_memb_2_rg_0.1_
/Users/weilu/Research/server/oct_2017/30oct/strengthen_helix_1/temp_350_memb_4_rg_0.4_
/Users/weilu/Research/server/oct_2017/30oct/strengthen_helix_1/temp_500_memb_2_rg_0.1_
/Users/weilu/Research/server/oct_2017/30oct/strengthen_helix_1/temp_350_memb_2_rg_0.4_
/Users/weilu/Research/server/oct_2017/30oct/strengthen_helix_1/temp_500_memb_4_rg_0.4_
/Users/weilu/Research/server/oct_2017/30oct/strengthen_helix_1/temp_500_memb_4_rg_0.1_
/Users/weilu/Research/server/oct_2017/30oct/strengthen_helix_1/temp_500_memb_2_rg_0.4_
/Users/weilu/Research/server/oct_2017/30oct/strengthen_helix_1/temp_350_memb_4_rg_0.1_
/Users/weilu/Research/server/oct_2017/30oct/strengthen_helix_1_baseline_without_strengthen/temp_350_memb_2_rg_0.1_
/Users/weilu/Research/server/oct_2017/30oct/strengthen_helix_1_baseline_without_strengthen/temp_350_memb_4_rg_0.4_
/Users/weilu/Research/server/oct_2017/30oct/strengthen_helix_1_baseline_without_strengthen/temp_500_memb_2_rg_0.1_
/Users/weilu/Research/server/oct_2017/30oct/strengthen_helix_1_baseline_without_strengthen/temp_350_memb_2_rg_0.4_
/Users/weilu/Research/server/oct_2017/30oct/strengthen_helix_1_baseline_without_strengthen/temp_500_memb_4_rg_0.4_
/Users/weilu/Research/server/oct_2017/30oct/strengthen_helix_1_baseline_without_strengthen/temp_500_memb_4_rg_0.1_
/Users/weilu/Research/server/oct_2017/30oct/strengthen_helix_1_baseline_without_strengthen/temp_500_memb_2_rg_0.4_
/Users/weilu/Research/server/oct_2017/30oct/strengthen_helix_1_baseline_without_strengthen/temp_350_memb_4_rg_0.1_
5
9
12
14
15
Out[48]:
1.9499850149169937

In [54]:
tmp = data.query('Location=="strengthen_helix_1_baseline_without_strengthen"').query('Steps < 1e6').query('temp=="350"')
tmp =tmp.query('rg=="0.1"').query('memb=="2"')


results = tmp.filter(items=["Steps"] +["Lipid"+str(i) for i in range(1,16)]).mean()
helix1 = 0 
for i in range(1,6):
    helix1 += results["Lipid" +str(i)]

helix6 = 0
ii = 0
for i in range(5,0,-1):
    ii = ii + i
    print(ii)
    helix6 += results["Lipid" +str(ii)]

helix1 - helix6


5
9
12
14
15
Out[54]:
1.6297487072661312

In [55]:
# offset -5
helix1 - helix6


Out[55]:
1.6297487072661312

In [47]:
# offset -2
helix1 - helix6


Out[47]:
4.932207833357694

In [45]:
# offset -1 
helix1 - helix6


Out[45]:
5.8028303110838184

In [43]:
# offset 0
helix1 - helix6


Out[43]:
6.321547949765721

In [ ]: