In [80]:
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import os
from datetime import datetime
%matplotlib inline
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12
# Where to save the figures
PROJECT_ROOT_DIR = "."
CHAPTER_ID = "classification"
def save_fig(fig_id, tight_layout=True):
path = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID, fig_id + ".png")
print("Saving figure", fig_id)
if tight_layout:
plt.tight_layout()
plt.savefig(path, format='png', dpi=300)
In [81]:
raw_test_data = pd.read_csv("/Users/weilu/Research/data/test_data/test_data_4.csv")
raw_data_T0784 = raw_test_data.groupby("Name").get_group("T0784")
raw_data_T0792 = raw_test_data.groupby("Name").get_group("T0792")
# raw_data = pd.concat([raw_data_T0784, raw_data_T0792])
raw_data = raw_data_T0792
In [82]:
raw_test_data.columns
Out[82]:
In [83]:
raw_data["Good"].value_counts()
Out[83]:
In [84]:
# FEATURES = ["Rw", "VTotal", "QGO"]
# FEATURES = ["Rw", "VTotal", "QGO", "Burial", "Frag_Mem", "Water"]
# FEATURES = list(raw_test_data.columns[2:-3])
FEATURES = ['Rw',
'VTotal',
'QGO',
'Burial',
'Water',
'Rama',
'DSSP',
'P_AP',
'Helix',
'Frag_Mem']
# LABEL = "Qw"
LABEL = "Good"
PolynomialDegree = 1
In [85]:
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import FeatureUnion
from sklearn.preprocessing import PolynomialFeatures
# Create a class to select numerical or categorical columns
# since Scikit-Learn doesn't handle DataFrames yet
class DataFrameSelector(BaseEstimator, TransformerMixin):
def __init__(self, attribute_names):
self.attribute_names = attribute_names
def fit(self, X, y=None):
return self
def transform(self, X):
return X[self.attribute_names].values
class RemoveFirstFrame(BaseEstimator, TransformerMixin):
def __init__(self, frame):
self.frame = frame
def fit(self, X, y=None):
return self
def transform(self, X):
return X.query(f"Step % {frame} != 1")
In [86]:
# I want to start with the simplest linear regression
In [87]:
num_attribs = FEATURES
cat_attribs = [LABEL]
frame = 201
num_pipeline = Pipeline([
('selector', DataFrameSelector(num_attribs)),
('std_scaler', StandardScaler()),
('poly', PolynomialFeatures(degree=PolynomialDegree, include_bias=False))
])
cat_pipeline = Pipeline([
('selector', DataFrameSelector(cat_attribs))
])
full_pipeline = FeatureUnion(transformer_list=[
("num_pipeline", num_pipeline),
("cat_pipeline", cat_pipeline),
])
my_full_pipeline = Pipeline([
('removeFirstFrame', RemoveFirstFrame(frame)),
('featureSelection', full_pipeline)
])
In [88]:
from sklearn.model_selection import StratifiedShuffleSplit
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(raw_data, raw_data["Good"]):
strat_train_set = raw_data.iloc[train_index]
strat_test_set = raw_data.iloc[test_index]
# strat_test_set[LABEL].value_counts() / len(strat_test_set)
X_train = my_full_pipeline.fit_transform(strat_train_set)
X_test = my_full_pipeline.fit_transform(strat_test_set)
train_y = X_train[:,-1]
train_set = X_train[:,:-1]
test_y = X_test[:,-1]
test_set = X_test[:,:-1]
In [99]:
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
p = 0.1
# log_clf = LogisticRegression(random_state=142)
# rnd_clf = RandomForestClassifier(random_state=432)
# svm_clf = SVC(probability=True, random_state=412)
log_clf = LogisticRegression(random_state=142, class_weight={0:p, 1:(1-p)})
rnd_clf = RandomForestClassifier(random_state=432, class_weight={0:p, 1:(1-p)})
svm_clf = SVC(probability=True, random_state=412, class_weight={0:p, 1:(1-p)})
voting_clf = VotingClassifier(
estimators=[('lr', log_clf), ('rf', rnd_clf), ('svc', svm_clf)],
voting='soft')
log_clf.fit(train_set, train_y)
rnd_clf.fit(train_set, train_y)
svm_clf.fit(train_set, train_y)
voting_clf.fit(train_set, train_y)
Out[99]:
In [100]:
# check on validation set
n = 10
for clf in (log_clf, rnd_clf, svm_clf, voting_clf):
# y_pred = clf.predict(train_set)
prob= clf.predict_proba(validation_set)[:,1]
position_of_top_n = prob.argsort()[-n:][::-1]
threshold = prob[position_of_top_n][-1]
predict_y = np.zeros(len(validation_y),)
predict_y[position_of_top_n] = 1
# predict_y = (test > threshold)
# print(threshold)
cm = confusion_matrix(validation_y, predict_y)
# print(clf.__class__.__name__, "\n", accuracy_score(train_y, predict_y))
print(clf.__class__.__name__, "\n", cm)
In [101]:
# check on training set
n = 10
for clf in (log_clf, rnd_clf, svm_clf, voting_clf):
# y_pred = clf.predict(train_set)
prob= clf.predict_proba(train_set)[:,1]
position_of_top_n = prob.argsort()[-n:][::-1]
threshold = prob[position_of_top_n][-1]
predict_y = np.zeros(len(train_y),)
predict_y[position_of_top_n] = 1
# predict_y = (test > threshold)
# print(threshold)
cm = confusion_matrix(train_y, predict_y)
# print(clf.__class__.__name__, "\n", accuracy_score(train_y, predict_y))
print(clf.__class__.__name__, "\n", cm)
In [102]:
log_clf.coef_
Out[102]:
In [103]:
FEATURES
Out[103]:
In [94]:
time_stamp = f"{datetime.today().strftime('%d_%h_%H%M%S')}"
for name, data in raw_test_data.groupby("Name"):
print(name)
X = full_pipeline.fit_transform(data)
eval_y = X[:,-1]
eval_set = X[:,:-1]
test= log_clf.predict_proba(eval_set)[:,1]
position_of_top_n = test.argsort()[-n:][::-1]
threshold = test[position_of_top_n][-1]
predict_y = np.zeros(len(eval_y),)
predict_y[position_of_top_n] = 1
with open(f"/Users/weilu/Research/data/structure_selector/{name}_results_{time_stamp}.csv", "w") as f:
f.write("Result\n")
for i in test:
f.write(str(i) + "\n")
# predict_y = (test > threshold)
# print(threshold)
print(confusion_matrix(eval_y, predict_y))
In [ ]: