/Users/weilu/anaconda3/lib/python3.6/site-packages/sklearn/ensemble/weight_boosting.py:29: DeprecationWarning: numpy.core.umath_tests is an internal NumPy module and should not be imported. It will be removed in a future NumPy release.
from numpy.core.umath_tests import inner1d
/Users/weilu/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/Users/weilu/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/Users/weilu/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/Users/weilu/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/Users/weilu/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/Users/weilu/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/Users/weilu/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/Users/weilu/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/Users/weilu/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/Users/weilu/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/Users/weilu/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/Users/weilu/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/Users/weilu/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/Users/weilu/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/Users/weilu/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/Users/weilu/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
~/anaconda3/lib/python3.6/site-packages/pandas/core/groupby/groupby.py in apply(self, func, *args, **kwargs)
917 try:
--> 918 result = self._python_apply_general(f)
919 except Exception:
~/anaconda3/lib/python3.6/site-packages/pandas/core/groupby/groupby.py in _python_apply_general(self, f)
935 keys, values, mutated = self.grouper.apply(f, self._selected_obj,
--> 936 self.axis)
937
~/anaconda3/lib/python3.6/site-packages/pandas/core/groupby/groupby.py in apply(self, f, data, axis)
2272 group_axes = _get_axes(group)
-> 2273 res = f(group)
2274 if not _is_indexed_like(res, group_axes):
<ipython-input-24-d3dfc9c50ced> in pred_from_raw(a)
56 def pred_from_raw(a):
---> 57 data = my_transform(a, label=LABEL, degree=DEGREE, FEATURES=FEATURES)
58 test_y = data[:,-1]
<ipython-input-24-d3dfc9c50ced> in my_transform(data, label, degree, FEATURES)
30 ])
---> 31 return full_pipeline.fit_transform(data)
32
~/anaconda3/lib/python3.6/site-packages/sklearn/pipeline.py in fit_transform(self, X, y, **fit_params)
738 **fit_params)
--> 739 for name, trans, weight in self._iter())
740
~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in __call__(self, iterable)
778 # case of Parallel used with an exhausted iterator.
--> 779 while self.dispatch_one_batch(iterator):
780 self._iterating = True
~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in dispatch_one_batch(self, iterator)
624 else:
--> 625 self._dispatch(tasks)
626 return True
~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in _dispatch(self, batch)
587 cb = BatchCompletionCallBack(dispatch_timestamp, len(batch), self)
--> 588 job = self._backend.apply_async(batch, callback=cb)
589 self._jobs.append(job)
~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py in apply_async(self, func, callback)
110 """Schedule a func to be run"""
--> 111 result = ImmediateResult(func)
112 if callback:
~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py in __init__(self, batch)
331 # arguments in memory
--> 332 self.results = batch()
333
~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in __call__(self)
130 def __call__(self):
--> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
132
~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in <listcomp>(.0)
130 def __call__(self):
--> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
132
~/anaconda3/lib/python3.6/site-packages/sklearn/pipeline.py in _fit_transform_one(transformer, weight, X, y, **fit_params)
580 if hasattr(transformer, 'fit_transform'):
--> 581 res = transformer.fit_transform(X, y, **fit_params)
582 else:
~/anaconda3/lib/python3.6/site-packages/sklearn/pipeline.py in fit_transform(self, X, y, **fit_params)
280 last_step = self._final_estimator
--> 281 Xt, fit_params = self._fit(X, y, **fit_params)
282 if hasattr(last_step, 'fit_transform'):
~/anaconda3/lib/python3.6/site-packages/sklearn/pipeline.py in _fit(self, X, y, **fit_params)
212 cloned_transformer, None, Xt, y,
--> 213 **fit_params_steps[name])
214 # Replace the transformer of the step with the fitted
~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/memory.py in __call__(self, *args, **kwargs)
361 def __call__(self, *args, **kwargs):
--> 362 return self.func(*args, **kwargs)
363
~/anaconda3/lib/python3.6/site-packages/sklearn/pipeline.py in _fit_transform_one(transformer, weight, X, y, **fit_params)
580 if hasattr(transformer, 'fit_transform'):
--> 581 res = transformer.fit_transform(X, y, **fit_params)
582 else:
~/anaconda3/lib/python3.6/site-packages/sklearn/base.py in fit_transform(self, X, y, **fit_params)
516 # fit method of arity 1 (unsupervised transformation)
--> 517 return self.fit(X, **fit_params).transform(X)
518 else:
~/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/data.py in fit(self, X, y)
589 self._reset()
--> 590 return self.partial_fit(X, y)
591
~/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/data.py in partial_fit(self, X, y)
611 X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy,
--> 612 warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES)
613
~/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
452 if force_all_finite:
--> 453 _assert_all_finite(array)
454
~/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py in _assert_all_finite(X)
43 raise ValueError("Input contains NaN, infinity"
---> 44 " or a value too large for %r." % X.dtype)
45
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
<ipython-input-24-d3dfc9c50ced> in <module>()
75
76
---> 77 filtered = filtered.reset_index(drop=True).groupby("name").apply(pred_from_raw).reset_index(drop=True)
78
79
~/anaconda3/lib/python3.6/site-packages/pandas/core/groupby/groupby.py in apply(self, func, *args, **kwargs)
928
929 with _group_selection_context(self):
--> 930 return self._python_apply_general(f)
931
932 return result
~/anaconda3/lib/python3.6/site-packages/pandas/core/groupby/groupby.py in _python_apply_general(self, f)
934 def _python_apply_general(self, f):
935 keys, values, mutated = self.grouper.apply(f, self._selected_obj,
--> 936 self.axis)
937
938 return self._wrap_applied_output(
~/anaconda3/lib/python3.6/site-packages/pandas/core/groupby/groupby.py in apply(self, f, data, axis)
2271 # group might be modified
2272 group_axes = _get_axes(group)
-> 2273 res = f(group)
2274 if not _is_indexed_like(res, group_axes):
2275 mutated = True
<ipython-input-24-d3dfc9c50ced> in pred_from_raw(a)
55
56 def pred_from_raw(a):
---> 57 data = my_transform(a, label=LABEL, degree=DEGREE, FEATURES=FEATURES)
58 test_y = data[:,-1]
59 test_set = data[:,:-1]
<ipython-input-24-d3dfc9c50ced> in my_transform(data, label, degree, FEATURES)
29 ("cat_pipeline", cat_pipeline),
30 ])
---> 31 return full_pipeline.fit_transform(data)
32
33
~/anaconda3/lib/python3.6/site-packages/sklearn/pipeline.py in fit_transform(self, X, y, **fit_params)
737 delayed(_fit_transform_one)(trans, weight, X, y,
738 **fit_params)
--> 739 for name, trans, weight in self._iter())
740
741 if not result:
~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in __call__(self, iterable)
777 # was dispatched. In particular this covers the edge
778 # case of Parallel used with an exhausted iterator.
--> 779 while self.dispatch_one_batch(iterator):
780 self._iterating = True
781 else:
~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in dispatch_one_batch(self, iterator)
623 return False
624 else:
--> 625 self._dispatch(tasks)
626 return True
627
~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in _dispatch(self, batch)
586 dispatch_timestamp = time.time()
587 cb = BatchCompletionCallBack(dispatch_timestamp, len(batch), self)
--> 588 job = self._backend.apply_async(batch, callback=cb)
589 self._jobs.append(job)
590
~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py in apply_async(self, func, callback)
109 def apply_async(self, func, callback=None):
110 """Schedule a func to be run"""
--> 111 result = ImmediateResult(func)
112 if callback:
113 callback(result)
~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py in __init__(self, batch)
330 # Don't delay the application, to avoid keeping the input
331 # arguments in memory
--> 332 self.results = batch()
333
334 def get(self):
~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in __call__(self)
129
130 def __call__(self):
--> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
132
133 def __len__(self):
~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in <listcomp>(.0)
129
130 def __call__(self):
--> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
132
133 def __len__(self):
~/anaconda3/lib/python3.6/site-packages/sklearn/pipeline.py in _fit_transform_one(transformer, weight, X, y, **fit_params)
579 **fit_params):
580 if hasattr(transformer, 'fit_transform'):
--> 581 res = transformer.fit_transform(X, y, **fit_params)
582 else:
583 res = transformer.fit(X, y, **fit_params).transform(X)
~/anaconda3/lib/python3.6/site-packages/sklearn/pipeline.py in fit_transform(self, X, y, **fit_params)
279 """
280 last_step = self._final_estimator
--> 281 Xt, fit_params = self._fit(X, y, **fit_params)
282 if hasattr(last_step, 'fit_transform'):
283 return last_step.fit_transform(Xt, y, **fit_params)
~/anaconda3/lib/python3.6/site-packages/sklearn/pipeline.py in _fit(self, X, y, **fit_params)
211 Xt, fitted_transformer = fit_transform_one_cached(
212 cloned_transformer, None, Xt, y,
--> 213 **fit_params_steps[name])
214 # Replace the transformer of the step with the fitted
215 # transformer. This is necessary when loading the transformer
~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/memory.py in __call__(self, *args, **kwargs)
360
361 def __call__(self, *args, **kwargs):
--> 362 return self.func(*args, **kwargs)
363
364 def call_and_shelve(self, *args, **kwargs):
~/anaconda3/lib/python3.6/site-packages/sklearn/pipeline.py in _fit_transform_one(transformer, weight, X, y, **fit_params)
579 **fit_params):
580 if hasattr(transformer, 'fit_transform'):
--> 581 res = transformer.fit_transform(X, y, **fit_params)
582 else:
583 res = transformer.fit(X, y, **fit_params).transform(X)
~/anaconda3/lib/python3.6/site-packages/sklearn/base.py in fit_transform(self, X, y, **fit_params)
515 if y is None:
516 # fit method of arity 1 (unsupervised transformation)
--> 517 return self.fit(X, **fit_params).transform(X)
518 else:
519 # fit method of arity 2 (supervised transformation)
~/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/data.py in fit(self, X, y)
588 # Reset internal state before fitting
589 self._reset()
--> 590 return self.partial_fit(X, y)
591
592 def partial_fit(self, X, y=None):
~/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/data.py in partial_fit(self, X, y)
610 """
611 X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy,
--> 612 warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES)
613
614 # Even in the case of `with_mean=False`, we update the mean anyway
~/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
451 % (array.ndim, estimator_name))
452 if force_all_finite:
--> 453 _assert_all_finite(array)
454
455 shape_repr = _shape_repr(array.shape)
~/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py in _assert_all_finite(X)
42 and not np.isfinite(X).all()):
43 raise ValueError("Input contains NaN, infinity"
---> 44 " or a value too large for %r." % X.dtype)
45
46
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').