In [1]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import glob
import jedi
%matplotlib inline
In [34]:
location = "/Users/weilu/Research/server/oct_2017/23oct/memb_3_rg_0.1_lipid_1_topology/simulation/test/0/0/"
fileName = "angles.csv"
data = pd.read_csv(location + fileName)
data.columns = data.columns.str.strip()
data2 = data.pivot_table(values='Angle', index='Frame', columns='Helix')
data2.columns = ["Helix" + str(i) for i in list(data2.columns)]
In [35]:
data2.query('abs(Helix1) > 0.2 & abs(Helix6) < 0.2')
Out[35]:
In [1]:
location = "/Users/weilu/Research/server/oct_2017/23oct/memb_3_rg_0.1_lipid_1_extended/1d_dis/t_all/force_0.0/evpb-500.dat"
name_list = ["Lipid", "Go", "Mem", "Rg"]
names = ["bin", "x"] + name_list
data = pd.read_table(location, skiprows=1, sep='\s+', names=names)
In [69]:
fig, ax = plt.subplots()
processed_data = data - data.mean()
for name in name_list:
processed_data.query('x < 120').plot('x', name, ax=ax, ylim=(-50,50))
In [64]:
data.mean()
Out[64]:
In [74]:
location = "/Users/weilu/Research/server/oct_2017/23oct/memb_3_rg_0.1_lipid_1_topology/sub_sample_1d_dis_t_all/"
file = "pmf-420.dat"
name_list = ["e1", "e2", "e3", "e4"]
names = ["bin", "x"] + name_list
data1 = pd.read_table(location+file, skiprows=2, sep='\s+', names=names)
location = "/Users/weilu/Research/server/oct_2017/23oct/memb_3_rg_0.1_lipid_1_topology/sub_sample_1d_dis_t_all/compare/"
file = "pmf-420.dat"
name_list = ["e1", "e2", "e3", "e4"]
names = ["bin", "x"] + name_list
data2 = pd.read_table(location+file, skiprows=2, sep='\s+', names=names)
In [79]:
fig, ax = plt.subplots()
data1.plot('x', 'e1', ax=ax)
data2.plot('x', 'e1', ax=ax, c="red")
Out[79]:
In [ ]: