In [2]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
import os
# from small_script.myFunctions import *
%matplotlib inline
%load_ext autoreload
%autoreload 2
In [3]:
plt.rcParams['figure.figsize'] = [16.18033, 10] #golden ratio
plt.rcParams['figure.facecolor'] = 'w'
plt.rcParams['figure.dpi'] = 100
In [4]:
plt.rcParams['figure.figsize'] = [16.18033, 10]
dataset = {"old":"1R69, 1UTG, 3ICB, 256BA, 4CPV, 1CCR, 2MHR, 1MBA, 2FHA".split(", "),
"new":"1FC2C, 1ENH, 2GB1, 2CRO, 1CTF, 4ICB".split(", "),
"test":["t089", "t120", "t251", "top7", "1ubq", "t0766", "t0778", "t0782", "t0792", "t0803", "t0815", "t0833", "t0842", "t0844"]}
dataset["combined"] = dataset["old"] + dataset["new"]
# pdb_list, steps = dataset["old"]
def get_data(pre, pdb_list, simType="all_simulations", n_rum=30, rerun=1, formatName=True):
# to get last 20 frame of each run
_all = []
for p in pdb_list:
if formatName:
name = p.lower()[:4]
else:
name = p
for i in range(n_rum):
for ii in range(rerun):
location = pre + f"{simType}/{name}/simulation/{i}/{ii}/wham.dat"
try:
tmp = pd.read_csv(location).tail(50).reset_index()
tmp.columns = tmp.columns.str.strip()
_all.append(tmp.assign(Run=i, Name=name, Rerun=ii))
except Exception as e:
print(e)
data = pd.concat(_all)
data["Run"] = "Run" + data["Run"].astype(str)
return data
# pre = "/Users/weilu/Research/server/feb_2019/optimization_iter1/database/2gb1/"
# fileName = "movie.pdb"
def splitPDB(pre, fileName):
location = f"{pre}/{fileName}"
with open(location, "r") as f:
a = f.readlines()
i = 0
tmp = ""
for line in a:
tmp += line
# os.system(f"echo '{line}' >> {pre}frame{i}")
if line == "END\n":
with open(f"{pre}frame{i}.pdb", "w") as out:
out.write(tmp)
i += 1
tmp = ""
import subprocess
def getFromTerminal(CMD):
return subprocess.Popen(CMD,stdout=subprocess.PIPE,shell=True).communicate()[0].decode()
def getSize(p):
protein = p.lower()[:4]
pre = f"/Users/weilu/Research/server/feb_2019/iterative_optimization_test_set/all_simulations/{protein}/{protein}/ssweight"
a = getFromTerminal(f"wc {pre}")
# print(a)
n = int(a.split()[0])
return n
In [12]:
data_origin = pd.read_csv("/Users/weilu/Research/data/optimization/original_iterative_optimization_combined_train_set_with_frag_04-06.csv", index_col=0)
data = pd.read_csv("/Users/weilu/Research/data/optimization/iter0_iterative_optimization_combined_train_set_with_frag_04-08.csv", index_col=0)
data2 = pd.read_csv("/Users/weilu/Research/data/optimization/without_contact_iterative_optimization_combined_train_set_with_frag_04-09.csv", index_col=0)
data3 = pd.read_csv("/Users/weilu/Research/data/optimization/original_with_rg_iterative_optimization_combined_train_set_with_frag_04-09.csv", index_col=0)
data4 = pd.read_csv("/Users/weilu/Research/data/optimization/iter6_with_rg_iterative_optimization_combined_train_set_with_frag_04-09.csv", index_col=0)
data5 = pd.read_csv("/Users/weilu/Research/data/optimization/iter1_with_rg_iterative_optimization_combined_train_set_with_frag_04-10.csv", index_col=0)
data6 = pd.read_csv("/Users/weilu/Research/data/optimization/iter2_with_rg_iterative_optimization_combined_train_set_with_frag_04-11.csv", index_col=0)
data7 = pd.read_csv("/Users/weilu/Research/data/optimization/iter3_with_rg_iterative_optimization_combined_train_set_with_frag_04-12.csv", index_col=0)
data8 = pd.read_csv("/Users/weilu/Research/data/optimization/iter3_with_rg_less_frag_iterative_optimization_combined_train_set_with_frag_04-13.csv", index_col=0)
data9 = pd.read_csv("/Users/weilu/Research/data/optimization/multi_iter0_iterative_optimization_combined_train_set_with_frag_04-15.csv", index_col=0)
data10 = pd.read_csv("/Users/weilu/Research/data/optimization/multi_iter1_iterative_optimization_combined_train_set_with_frag_04-16.csv", index_col=0)
# data_origin_2 = pd.read_csv("/Users/weilu/Research/data/optimization/original_iterative_optimization_combined_train_set_04-01.csv", index_col=0)
data11 = pd.read_csv("/Users/weilu/Research/data/optimization/multi_iter2_iterative_optimization_combined_train_set_with_frag_04-17.csv", index_col=0)
data12 = pd.read_csv("/Users/weilu/Research/data/optimization/multi_groupedNorm_iterative_optimization_combined_train_set_with_frag_04-23.csv", index_col=0)
data13 = pd.read_csv("/Users/weilu/Research/data/optimization/multi_groupedNorm_check_iterative_optimization_combined_train_set_with_frag_04-23.csv", index_col=0)
data14 = pd.read_csv("/Users/weilu/Research/data/optimization/multi_iter1_correct_iterative_optimization_combined_train_set_with_frag_04-24.csv", index_col=0)
data15 = pd.read_csv("/Users/weilu/Research/data/optimization/multi_iter1_correct_30_iterative_optimization_combined_train_set_with_frag_04-24.csv", index_col=0)
data16 = pd.read_csv("/Users/weilu/Research/data/optimization/multi_group_iter1_iterative_optimization_combined_train_set_with_frag_04-24.csv", index_col=0)
data17 = pd.read_csv("/Users/weilu/Research/data/optimization/multi_iter1_correct_real_iterative_optimization_combined_train_set_with_frag_04-25.csv", index_col=0)
data18 = pd.read_csv("/Users/weilu/Research/data/optimization/multi_group_iterative_optimization_combined_train_set_with_frag_04-26.csv", index_col=0)
data19 = pd.read_csv("/Users/weilu/Research/data/optimization/multi_group_iter1_apr26_iterative_optimization_combined_train_set_with_frag_04-30.csv", index_col=0)
d = pd.concat([
# data2.assign(Scheme="without contact"),
# data.assign(Scheme="iter0"),
# data4.assign(Scheme="iter6"),
# data5.assign(Scheme="iter1"),
data9.assign(Scheme="multi Seq"),
data3.assign(Scheme="original"),
# data_origin.query("Rerun == 1").assign(Scheme="original 2"),
# data6.assign(Scheme="iter2"),
# data10.assign(Scheme="multi Seq iter1"),
# data11.assign(Scheme="multi Seq iter2"),
# data12.assign(Scheme="groupedNorm"),
# data13.assign(Scheme="groupedNormCheck"),
# data14.assign(Scheme="iter1 correct"),
# data15.assign(Scheme="iter1 correct_30"),
# data16.assign(Scheme="iter1 groupNorm"),
# data17.assign(Scheme="iter1 correct real"),
# data18.assign(Scheme="multi Group"),
data19.assign(Scheme="multi_group_iter1_apr26"),
# data7.assign(Scheme="iter3"),
# data8.assign(Scheme="iter3_less_frag"),
# data4.query("Rerun == 1").assign(Scheme="iter7_90"),
# data5.query("Rerun == 1").assign(Scheme="iter3_90"),
# data6.query("Rerun == 1").assign(Scheme="iter4"),
# data7.query("Rerun == 1").assign(Scheme="iter5"),
])
sns.boxplot("Name", "Qw", hue="Scheme", data=d)
# sns.boxplot("Qw", "Name", hue="Scheme", data=d)
Out[12]:
In [7]:
pre = "/Users/weilu/Research/server/april_2019/"
folder = "iterative_optimization_combined_train_set_with_frag"
pre = pre + folder + "/"
simulationType = "group_iter0_only"
today = datetime.datetime.today().strftime('%m-%d')
# pdb_list, steps = dataset["test"]
pdb_list = dataset["combined"]
# pdb_list = "1FC2C, 1ENH, 2GB1, 2CRO, 1CTF, 4ICB".split(", ")
data = get_data(pre, pdb_list, simType=simulationType, n_rum=30, rerun=1, formatName=True)
data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/{simulationType}_{folder}_{today}.csv")
# data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/withoutContact_{today}.csv")
sns.boxplot("Name", "Qw", data=data)
Out[7]:
In [6]:
pre = "/Users/weilu/Research/server/april_2019/"
folder = "iterative_optimization_combined_train_set_with_frag"
pre = pre + folder + "/"
simulationType = "groupOnly"
today = datetime.datetime.today().strftime('%m-%d')
# pdb_list, steps = dataset["test"]
pdb_list = dataset["combined"]
# pdb_list = "1FC2C, 1ENH, 2GB1, 2CRO, 1CTF, 4ICB".split(", ")
data = get_data(pre, pdb_list, simType=simulationType, n_rum=30, rerun=1, formatName=True)
data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/{simulationType}_{folder}_{today}.csv")
# data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/withoutContact_{today}.csv")
sns.boxplot("Name", "Qw", data=data)
Out[6]:
In [5]:
pre = "/Users/weilu/Research/server/april_2019/"
folder = "iterative_optimization_combined_train_set_with_frag"
pre = pre + folder + "/"
simulationType = "multi_group_iter1_apr26"
today = datetime.datetime.today().strftime('%m-%d')
# pdb_list, steps = dataset["test"]
pdb_list = dataset["combined"]
# pdb_list = "1FC2C, 1ENH, 2GB1, 2CRO, 1CTF, 4ICB".split(", ")
data = get_data(pre, pdb_list, simType=simulationType, n_rum=30, rerun=1, formatName=True)
data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/{simulationType}_{folder}_{today}.csv")
# data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/withoutContact_{today}.csv")
sns.boxplot("Name", "Qw", data=data)
Out[5]:
In [27]:
pre = "/Users/weilu/Research/server/april_2019/"
folder = "iterative_optimization_combined_train_set_with_frag"
pre = pre + folder + "/"
simulationType = "multi_group"
today = datetime.datetime.today().strftime('%m-%d')
# pdb_list, steps = dataset["test"]
pdb_list = dataset["combined"]
# pdb_list = "1FC2C, 1ENH, 2GB1, 2CRO, 1CTF, 4ICB".split(", ")
data = get_data(pre, pdb_list, simType=simulationType, n_rum=30, rerun=1, formatName=True)
data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/{simulationType}_{folder}_{today}.csv")
# data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/withoutContact_{today}.csv")
sns.boxplot("Name", "Qw", data=data)
Out[27]:
In [23]:
pre = "/Users/weilu/Research/server/april_2019/"
folder = "iterative_optimization_combined_train_set_with_frag"
pre = pre + folder + "/"
simulationType = "multi_iter1_correct_real"
today = datetime.datetime.today().strftime('%m-%d')
# pdb_list, steps = dataset["test"]
pdb_list = dataset["combined"]
# pdb_list = "1FC2C, 1ENH, 2GB1, 2CRO, 1CTF, 4ICB".split(", ")
data = get_data(pre, pdb_list, simType=simulationType, n_rum=30, rerun=1, formatName=True)
data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/{simulationType}_{folder}_{today}.csv")
# data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/withoutContact_{today}.csv")
sns.boxplot("Name", "Qw", data=data)
Out[23]:
In [18]:
pre = "/Users/weilu/Research/server/april_2019/"
folder = "iterative_optimization_combined_train_set_with_frag"
pre = pre + folder + "/"
simulationType = "multi_group_iter1"
today = datetime.datetime.today().strftime('%m-%d')
# pdb_list, steps = dataset["test"]
pdb_list = dataset["combined"]
# pdb_list = "1FC2C, 1ENH, 2GB1, 2CRO, 1CTF, 4ICB".split(", ")
data = get_data(pre, pdb_list, simType=simulationType, n_rum=30, rerun=1, formatName=True)
data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/{simulationType}_{folder}_{today}.csv")
# data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/withoutContact_{today}.csv")
sns.boxplot("Name", "Qw", data=data)
Out[18]:
In [15]:
pre = "/Users/weilu/Research/server/april_2019/"
folder = "iterative_optimization_combined_train_set_with_frag"
pre = pre + folder + "/"
simulationType = "multi_iter1_correct_30"
today = datetime.datetime.today().strftime('%m-%d')
# pdb_list, steps = dataset["test"]
pdb_list = dataset["combined"]
# pdb_list = "1FC2C, 1ENH, 2GB1, 2CRO, 1CTF, 4ICB".split(", ")
data = get_data(pre, pdb_list, simType=simulationType, n_rum=30, rerun=1, formatName=True)
data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/{simulationType}_{folder}_{today}.csv")
# data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/withoutContact_{today}.csv")
sns.boxplot("Name", "Qw", data=data)
Out[15]:
In [9]:
pre = "/Users/weilu/Research/server/april_2019/"
folder = "iterative_optimization_combined_train_set_with_frag"
pre = pre + folder + "/"
simulationType = "multi_iter1_correct"
today = datetime.datetime.today().strftime('%m-%d')
# pdb_list, steps = dataset["test"]
pdb_list = dataset["combined"]
# pdb_list = "1FC2C, 1ENH, 2GB1, 2CRO, 1CTF, 4ICB".split(", ")
data = get_data(pre, pdb_list, simType=simulationType, n_rum=30, rerun=1, formatName=True)
data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/{simulationType}_{folder}_{today}.csv")
# data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/withoutContact_{today}.csv")
sns.boxplot("Name", "Qw", data=data)
Out[9]:
In [7]:
pre = "/Users/weilu/Research/server/april_2019/"
folder = "iterative_optimization_combined_train_set_with_frag"
pre = pre + folder + "/"
simulationType = "multi_groupedNorm_check"
today = datetime.datetime.today().strftime('%m-%d')
# pdb_list, steps = dataset["test"]
pdb_list = dataset["combined"]
# pdb_list = "1FC2C, 1ENH, 2GB1, 2CRO, 1CTF, 4ICB".split(", ")
data = get_data(pre, pdb_list, simType=simulationType, n_rum=30, rerun=1, formatName=True)
data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/{simulationType}_{folder}_{today}.csv")
# data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/withoutContact_{today}.csv")
sns.boxplot("Name", "Qw", data=data)
Out[7]:
In [5]:
pre = "/Users/weilu/Research/server/april_2019/"
folder = "iterative_optimization_combined_train_set_with_frag"
pre = pre + folder + "/"
simulationType = "multi_groupedNorm"
today = datetime.datetime.today().strftime('%m-%d')
# pdb_list, steps = dataset["test"]
pdb_list = dataset["combined"]
# pdb_list = "1FC2C, 1ENH, 2GB1, 2CRO, 1CTF, 4ICB".split(", ")
data = get_data(pre, pdb_list, simType=simulationType, n_rum=30, rerun=1, formatName=True)
data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/{simulationType}_{folder}_{today}.csv")
# data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/withoutContact_{today}.csv")
sns.boxplot("Name", "Qw", data=data)
Out[5]:
In [29]:
pre = "/Users/weilu/Research/server/april_2019/"
folder = "iterative_optimization_combined_train_set_with_frag"
pre = pre + folder + "/"
simulationType = "multi_iter2"
today = datetime.datetime.today().strftime('%m-%d')
# pdb_list, steps = dataset["test"]
pdb_list = dataset["combined"]
# pdb_list = "1FC2C, 1ENH, 2GB1, 2CRO, 1CTF, 4ICB".split(", ")
data = get_data(pre, pdb_list, simType=simulationType, n_rum=30, rerun=1, formatName=True)
data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/{simulationType}_{folder}_{today}.csv")
# data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/withoutContact_{today}.csv")
sns.boxplot("Name", "Qw", data=data)
Out[29]:
In [19]:
pre = "/Users/weilu/Research/server/april_2019/"
folder = "iterative_optimization_combined_train_set_with_frag"
pre = pre + folder + "/"
simulationType = "multi_iter1"
today = datetime.datetime.today().strftime('%m-%d')
# pdb_list, steps = dataset["test"]
pdb_list = dataset["combined"]
# pdb_list = "1FC2C, 1ENH, 2GB1, 2CRO, 1CTF, 4ICB".split(", ")
data = get_data(pre, pdb_list, simType=simulationType, n_rum=30, rerun=1, formatName=True)
data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/{simulationType}_{folder}_{today}.csv")
# data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/withoutContact_{today}.csv")
sns.boxplot("Name", "Qw", data=data)
Out[19]:
In [4]:
pre = "/Users/weilu/Research/server/april_2019/"
folder = "iterative_optimization_combined_train_set_with_frag"
pre = pre + folder + "/"
simulationType = "multi_iter0"
today = datetime.datetime.today().strftime('%m-%d')
# pdb_list, steps = dataset["test"]
pdb_list = dataset["combined"]
# pdb_list = "1FC2C, 1ENH, 2GB1, 2CRO, 1CTF, 4ICB".split(", ")
data = get_data(pre, pdb_list, simType=simulationType, n_rum=30, rerun=1, formatName=True)
data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/{simulationType}_{folder}_{today}.csv")
# data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/withoutContact_{today}.csv")
sns.boxplot("Name", "Qw", data=data)
Out[4]:
In [37]:
pre = "/Users/weilu/Research/server/april_2019/"
folder = "iterative_optimization_combined_train_set_with_frag"
pre = pre + folder + "/"
simulationType = "iter3_with_rg_less_frag"
today = datetime.datetime.today().strftime('%m-%d')
# pdb_list, steps = dataset["test"]
pdb_list = dataset["combined"]
# pdb_list = "1FC2C, 1ENH, 2GB1, 2CRO, 1CTF, 4ICB".split(", ")
data = get_data(pre, pdb_list, simType=simulationType, n_rum=30, rerun=1, formatName=True)
data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/{simulationType}_{folder}_{today}.csv")
# data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/withoutContact_{today}.csv")
sns.boxplot("Name", "Qw", data=data)
Out[37]:
In [32]:
pre = "/Users/weilu/Research/server/april_2019/"
folder = "iterative_optimization_combined_train_set_with_frag"
pre = pre + folder + "/"
simulationType = "iter2_with_rg_90"
today = datetime.datetime.today().strftime('%m-%d')
# pdb_list, steps = dataset["test"]
pdb_list = dataset["combined"]
# pdb_list = "1FC2C, 1ENH, 2GB1, 2CRO, 1CTF, 4ICB".split(", ")
data = get_data(pre, pdb_list, simType=simulationType, n_rum=30, rerun=1, formatName=True)
data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/{simulationType}_{folder}_{today}.csv")
# data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/withoutContact_{today}.csv")
sns.boxplot("Name", "Qw", data=data)
Out[32]:
In [30]:
pre = "/Users/weilu/Research/server/april_2019/"
folder = "iterative_optimization_combined_train_set_with_frag"
pre = pre + folder + "/"
simulationType = "iter3_with_rg"
today = datetime.datetime.today().strftime('%m-%d')
# pdb_list, steps = dataset["test"]
pdb_list = dataset["combined"]
# pdb_list = "1FC2C, 1ENH, 2GB1, 2CRO, 1CTF, 4ICB".split(", ")
data = get_data(pre, pdb_list, simType=simulationType, n_rum=30, rerun=1, formatName=True)
data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/{simulationType}_{folder}_{today}.csv")
# data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/withoutContact_{today}.csv")
sns.boxplot("Name", "Qw", data=data)
Out[30]:
In [27]:
pre = "/Users/weilu/Research/server/april_2019/"
folder = "iterative_optimization_combined_train_set_with_frag"
pre = pre + folder + "/"
simulationType = "iter2_with_rg"
today = datetime.datetime.today().strftime('%m-%d')
# pdb_list, steps = dataset["test"]
pdb_list = dataset["combined"]
# pdb_list = "1FC2C, 1ENH, 2GB1, 2CRO, 1CTF, 4ICB".split(", ")
data = get_data(pre, pdb_list, simType=simulationType, n_rum=30, rerun=1, formatName=True)
data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/{simulationType}_{folder}_{today}.csv")
# data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/withoutContact_{today}.csv")
sns.boxplot("Name", "Qw", data=data)
Out[27]:
In [12]:
pre = "/Users/weilu/Research/server/april_2019/"
folder = "iterative_optimization_combined_train_set_with_frag"
pre = pre + folder + "/"
simulationType = "iter1_with_rg"
today = datetime.datetime.today().strftime('%m-%d')
# pdb_list, steps = dataset["test"]
pdb_list = dataset["combined"]
# pdb_list = "1FC2C, 1ENH, 2GB1, 2CRO, 1CTF, 4ICB".split(", ")
data = get_data(pre, pdb_list, simType=simulationType, n_rum=30, rerun=1, formatName=True)
data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/{simulationType}_{folder}_{today}.csv")
# data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/withoutContact_{today}.csv")
sns.boxplot("Name", "Qw", data=data)
Out[12]:
In [ ]:
pre = "/Users/weilu/Research/server/april_2019/"
folder = "iterative_optimization_combined_train_set_with_frag"
pre = pre + folder + "/"
simulationType = "iter6_with_rg"
today = datetime.datetime.today().strftime('%m-%d')
# pdb_list, steps = dataset["test"]
pdb_list = dataset["combined"]
# pdb_list = "1FC2C, 1ENH, 2GB1, 2CRO, 1CTF, 4ICB".split(", ")
data = get_data(pre, pdb_list, simType=simulationType, n_rum=30, rerun=1, formatName=True)
data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/{simulationType}_{folder}_{today}.csv")
# data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/withoutContact_{today}.csv")
sns.boxplot("Name", "Qw", data=data)
In [10]:
pre = "/Users/weilu/Research/server/april_2019/"
folder = "globular_2xov_named_2lep"
pre = pre + folder + "/"
simulationType = "longerRun"
today = datetime.datetime.today().strftime('%m-%d')
# pdb_list, steps = dataset["test"]
pdb_list = ["2lep"]
# pdb_list = "1FC2C, 1ENH, 2GB1, 2CRO, 1CTF, 4ICB".split(", ")
data = get_data(pre, pdb_list, simType=simulationType, n_rum=20, rerun=2, formatName=True)
data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/{simulationType}_{folder}_{today}.csv")
# data.reset_index(drop=True).to_csv(f"/Users/weilu/Research/data/optimization/withoutContact_{today}.csv")
# sns.boxplot("Name", "Qw", data=data)
Out[10]:
In [11]:
sns.boxplot("Run", "Qw", data=data)
Out[11]:
In [ ]: