In [1]:
import os
import sys
import random
import time
from random import seed, randint
import argparse
import platform
from datetime import datetime
import imp
import numpy as np
import fileinput
from itertools import product
import pandas as pd
from scipy.interpolate import griddata
from scipy.interpolate import interp2d
import seaborn as sns
from os import listdir
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.interpolate import griddata
import matplotlib as mpl
# sys.path.insert(0,'..')
# from notebookFunctions import *
# from .. import notebookFunctions
from Bio.PDB.Polypeptide import one_to_three
from Bio.PDB.Polypeptide import three_to_one
from Bio.PDB.PDBParser import PDBParser
from pyCodeLib import *
from small_script.myFunctions import *
from collections import defaultdict
%matplotlib inline
# plt.rcParams['figure.figsize'] = (10,6.180) #golden ratio
# %matplotlib notebook
%load_ext autoreload
%autoreload 2
In [2]:
plt.rcParams['figure.figsize'] = np.array([16.18033, 10]) #golden ratio
plt.rcParams['figure.facecolor'] = 'w'
plt.rcParams['figure.dpi'] = 100
plt.rcParams.update({'font.size': 22})
In [3]:
pdb_list = ["T0951-D1", "T0953s2-D1", "T0955-D1", "T0957s1-D1", "T0957s1-D2", "T0958-D1", "T0960-D5", "T0963-D3", "T0968s1-D1", "T1008-D1"]
In [4]:
pdb_list = ['1r69', '3icb', '256b', '4cpv', '2mhr', '1mba', '2fha', '1fc2', '1enh', '2gb1', '2cro', '1ctf', '4icb']
pdb_list += ["1uzc", "1ccr", "1jwe", "T0172_2"]
simulationType = "compare_side_chain_with_and_without"
run_n = 10
folder_list = ["run2"]
sub_mode_list = [11, 12]
all_data = []
for folder in folder_list:
for pdb in pdb_list:
for i in range(run_n):
for subMode in sub_mode_list:
pre = f"/Users/weilu/Research/server/mar_2020/{simulationType}/{folder}/{pdb}/{subMode}_{i}"
info_file = "info.dat"
location = f"{pre}/{info_file}"
try:
tmp = pd.read_csv(location, sep="\s+")
tmp = tmp.assign(Run=i, Protein=pdb, Folder=folder, subMode=subMode)
all_data.append(tmp)
except:
print(pdb, i, folder, subMode)
pass
data = pd.concat(all_data)
today = datetime.today().strftime('%m-%d')
outFile = f"/Users/weilu/Research/data/openMM/{simulationType}_{folder}_{subMode}_{today}.csv"
data.reset_index(drop=True).to_csv(outFile)
print(outFile)
In [19]:
data = pd.read_csv("/Users/weilu/Research/data/openMM/compare_side_chain_with_and_without_run2_12_03-02.csv", index_col=0)
scheme_dic = {"2":"new_cb_without_frag", "3":"old_cb_without_frag",
"4":"new_cb_with_ca_frag", "5":"old_cb_with_ca_frag", "6":"old_cb_my_gamma",
"11":"cbd_exclude_k1", "12":"cbd_exclude_k10"}
data["scheme"] = data["subMode"].astype(str).apply(lambda x: scheme_dic[x])
In [20]:
data_new = data
In [15]:
data = pd.read_csv("/Users/weilu/Research/data/openMM/compare_side_chain_with_and_without_side_chain_run1_7_02-25.csv", index_col=0)
scheme_dic = {"2":"new_cb_without_frag", "3":"old_cb_without_frag",
"4":"new_cb_with_ca_frag", "5":"old_cb_with_ca_frag", "6":"old_cb_my_gamma",
"7":"new_cb_new_gamma"}
data["scheme"] = data["subMode"].astype(str).apply(lambda x: scheme_dic[x])
In [16]:
data_old = data
In [21]:
data = pd.concat([data_new, data_old])
In [27]:
# length_info = pd.DataFrame(info_, columns=["Protein", "Length"])
# length_info["Protein_and_Length"] = length_info["Protein"] + "_" + length_info["Length"].astype(str)
# length_info.to_csv("/Users/weilu/Research/data/openMM/length_info_mar02.csv", index=0)
length_info = pd.read_csv("/Users/weilu/Research/data/openMM/length_info_mar02.csv")
length_order = length_info.sort_values("Length")["Length"].to_list()
pdb_order = length_info.sort_values("Length")["Protein"].to_list()
pdb_length_order = length_info.sort_values("Length")["Protein_and_Length"].to_list()
data = data.merge(length_info, on="Protein")
data.Protein = pd.Categorical(data.Protein,
categories=pdb_order)
data.Protein_and_Length = pd.Categorical(data.Protein_and_Length,
categories=pdb_length_order)
plt.rcParams['figure.figsize'] = 0.8*np.array([16.18033, 10]) #golden ratio
y = "Q"
d = data
t = d.groupby(["Protein", "subMode"])[y].idxmax().reset_index()
max_Q_data = d.iloc[t[y].to_list()].reset_index(drop=True)
sub_data = max_Q_data.query("subMode == 11 or subMode == 7")
ax = sns.lineplot(x="Protein_and_Length", y="Q", markers=True, ms=10, style="scheme", hue="scheme", data=sub_data, dashes=False)
plt.xticks(pdb_length_order, length_order)
plt.xlabel("Protein Length")
for i, line in sub_data.query("subMode == 11").reset_index(drop=True).iterrows():
# print(i, line)
# print(line["Protein"], )
plt.annotate(line["Protein"], (i, line["Q"]), fontsize=18)
plt.title("With Frag memory")
Out[27]:
In [6]:
y = "Q"
d = data
t = d.groupby(["Protein", "subMode"])[y].idxmax().reset_index()
max_Q_data = d.iloc[t[y].to_list()].reset_index(drop=True)
sub_data = max_Q_data
# new_order = max_Q_data.query("Folder == 'iteration_3'").sort_values("Q")["Protein"].unique().to_list()
# sub_data = max_Q_data.sort_values("Q").reset_index(drop=True).reset_index()
# sub_data.Protein = sub_data.Protein.astype(str)
# sub_data.Protein = pd.Categorical(sub_data.Protein,
# categories=new_order)
ax = sns.lineplot(x="Protein", y="Q", markers=True, ms=10, style="scheme", hue="scheme", data=sub_data, dashes=False)
In [9]:
data = pd.read_csv("/Users/weilu/Research/data/openMM/casp13_targets_side_chain_run1_5_02-22.csv", index_col=0)
scheme_dic = {"2":"new_cb_without_frag", "3":"old_cb_without_frag",
"4":"new_cb_with_ca_frag", "5":"old_cb_with_ca_frag", "6":"old_cb_my_gamma"}
data["scheme"] = data["subMode"].astype(str).apply(lambda x: scheme_dic[x])
In [10]:
y = "Q"
d = data
t = d.groupby(["Protein", "subMode"])[y].idxmax().reset_index()
max_Q_data = d.iloc[t[y].to_list()].reset_index(drop=True)
sub_data = max_Q_data
# new_order = max_Q_data.query("Folder == 'iteration_3'").sort_values("Q")["Protein"].unique().to_list()
# sub_data = max_Q_data.sort_values("Q").reset_index(drop=True).reset_index()
# sub_data.Protein = sub_data.Protein.astype(str)
# sub_data.Protein = pd.Categorical(sub_data.Protein,
# categories=new_order)
ax = sns.lineplot(x="Protein", y="Q", markers=True, ms=10, style="scheme", hue="scheme", data=sub_data, dashes=False)
In [6]:
pdb_list = ['1r69', '3icb', '256b', '4cpv', '2mhr', '1mba', '2fha', '1fc2', '1enh', '2gb1', '2cro', '1ctf', '4icb']
pdb_list += ["1uzc", "1ccr", "1jwe", "T0172_2"]
In [7]:
simulationType = "compare_side_chain_with_and_without"
run_n = 10
folder_list = ["side_chain_run1"]
sub_mode_list = [4, 5, 6, 7]
all_data = []
for folder in folder_list:
for pdb in pdb_list:
for i in range(run_n):
for subMode in sub_mode_list:
pre = f"/Users/weilu/Research/server/feb_2020/{simulationType}/{folder}/{pdb}/{subMode}_{i}"
info_file = "info.dat"
location = f"{pre}/{info_file}"
try:
tmp = pd.read_csv(location, sep="\s+")
tmp = tmp.assign(Run=i, Protein=pdb, Folder=folder, subMode=subMode)
all_data.append(tmp)
except:
print(pdb, i, folder, subMode)
pass
data = pd.concat(all_data)
today = datetime.today().strftime('%m-%d')
outFile = f"/Users/weilu/Research/data/openMM/{simulationType}_{folder}_{subMode}_{today}.csv"
data.reset_index(drop=True).to_csv(outFile)
print(outFile)
In [9]:
data = pd.read_csv("/Users/weilu/Research/data/openMM/compare_side_chain_with_and_without_side_chain_run1_7_02-25.csv", index_col=0)
scheme_dic = {"2":"new_cb_without_frag", "3":"old_cb_without_frag",
"4":"new_cb_with_ca_frag", "5":"old_cb_with_ca_frag", "6":"old_cb_my_gamma",
"7":"new_cb_new_gamma"}
data["scheme"] = data["subMode"].astype(str).apply(lambda x: scheme_dic[x])
In [8]:
info_ = []
for pdb in pdb_list:
fastaFile = f"/Users/weilu/Research/server/feb_2020/compare_side_chain_with_and_without/setups/{pdb}/{pdb}.fasta"
Length = len(getSeqFromFasta(fastaFile))
info_.append([pdb, Length])
In [11]:
In [12]:
length_info = pd.DataFrame(info_, columns=["Protein", "Length"])
length_info["Protein_and_Length"] = length_info["Protein"] + "_" + length_info["Length"].astype(str)
length_order = length_info.sort_values("Length")["Length"].to_list()
pdb_order = length_info.sort_values("Length")["Protein"].to_list()
pdb_length_order = length_info.sort_values("Length")["Protein_and_Length"].to_list()
data = data.merge(length_info, on="Protein")
data.Protein = pd.Categorical(data.Protein,
categories=pdb_order)
data.Protein_and_Length = pd.Categorical(data.Protein_and_Length,
categories=pdb_length_order)
plt.rcParams['figure.figsize'] = 0.8*np.array([16.18033, 10]) #golden ratio
y = "Q"
d = data
t = d.groupby(["Protein", "subMode"])[y].idxmax().reset_index()
max_Q_data = d.iloc[t[y].to_list()].reset_index(drop=True)
sub_data = max_Q_data
In [13]:
length_info = pd.DataFrame(info_, columns=["Protein", "Length"])
length_info["Protein_and_Length"] = length_info["Protein"] + "_" + length_info["Length"].astype(str)
length_order = length_info.sort_values("Length")["Length"].to_list()
pdb_order = length_info.sort_values("Length")["Protein"].to_list()
pdb_length_order = length_info.sort_values("Length")["Protein_and_Length"].to_list()
data = data.merge(length_info, on="Protein")
data.Protein = pd.Categorical(data.Protein,
categories=pdb_order)
data.Protein_and_Length = pd.Categorical(data.Protein_and_Length,
categories=pdb_length_order)
plt.rcParams['figure.figsize'] = 0.8*np.array([16.18033, 10]) #golden ratio
y = "Q"
d = data
t = d.groupby(["Protein", "subMode"])[y].idxmax().reset_index()
max_Q_data = d.iloc[t[y].to_list()].reset_index(drop=True)
sub_data = max_Q_data
ax = sns.lineplot(x="Protein_and_Length", y="Q", markers=True, ms=10, style="scheme", hue="scheme", data=sub_data, dashes=False)
plt.xticks(pdb_length_order, length_order)
plt.xlabel("Protein Length")
for i, line in sub_data.query("subMode == 4").reset_index(drop=True).iterrows():
# print(i, line)
# print(line["Protein"], )
plt.annotate(line["Protein"], (i, line["Q"]), fontsize=18)
plt.title("With Frag memory")
Out[13]:
In [178]:
ax = sns.lineplot(x="Protein_and_Length", y="Q", markers=True, ms=10, style="scheme", hue="scheme", data=sub_data, dashes=False)
plt.xticks(pdb_length_order, length_order)
plt.xlabel("Protein Length")
for i, line in sub_data.query("subMode == 4").reset_index(drop=True).iterrows():
# print(i, line)
# print(line["Protein"], )
plt.annotate(line["Protein"], (i, line["Q"]), fontsize=18)
plt.title("With Frag memory")
Out[178]:
In [170]:
ax = sns.lineplot(x="Protein_and_Length", y="Q", markers=True, ms=10, style="scheme", hue="scheme", data=sub_data, dashes=False)
plt.xticks(pdb_length_order, length_order)
plt.xlabel("Protein Length")
for i, line in sub_data.query("subMode == 4").reset_index(drop=True).iterrows():
# print(i, line)
# print(line["Protein"], )
plt.annotate(line["Protein"], (i, line["Q"]), fontsize=18)
plt.title("With Frag memory")
Out[170]:
In [164]:
ax = sns.lineplot(x="Protein_and_Length", y="Q", markers=True, ms=10, style="scheme", hue="scheme", data=sub_data, dashes=False)
plt.xticks(pdb_length_order, length_order)
plt.xlabel("Protein Length")
for i, line in sub_data.query("subMode == 4").reset_index(drop=True).iterrows():
# print(i, line)
# print(line["Protein"], )
plt.annotate(line["Protein"], (i, line["Q"]), fontsize=18)
plt.title("With Frag memory")
Out[164]:
In [25]:
simulationType = "compare_side_chain_with_and_without"
run_n = 10
folder_list = ["side_chain_run1"]
sub_mode_list = [2, 3]
all_data = []
for folder in folder_list:
for pdb in pdb_list:
for i in range(run_n):
for subMode in sub_mode_list:
pre = f"/Users/weilu/Research/server/feb_2020/{simulationType}/{folder}/{pdb}/{subMode}_{i}"
info_file = "info.dat"
location = f"{pre}/{info_file}"
try:
tmp = pd.read_csv(location, sep="\s+")
tmp = tmp.assign(Run=i, Protein=pdb, Folder=folder, subMode=subMode)
all_data.append(tmp)
except:
print(pdb, i, folder)
pass
data = pd.concat(all_data)
today = datetime.today().strftime('%m-%d')
outFile = f"/Users/weilu/Research/data/openMM/{simulationType}_{folder}_{subMode}_{today}.csv"
data.reset_index(drop=True).to_csv(outFile)
print(outFile)
In [102]:
data = pd.read_csv("/Users/weilu/Research/data/openMM/compare_side_chain_with_and_without_side_chain_run1_3_02-18.csv", index_col=0)
scheme_dic = {"2":"new_cb_without_frag", "3":"old_cb_without_frag"}
data["scheme"] = data["subMode"].astype(str).apply(lambda x: scheme_dic[x])
In [72]:
info_ = []
for pdb in pdb_list:
fastaFile = f"/Users/weilu/Research/server/feb_2020/compare_side_chain_with_and_without/setups/{pdb}/{pdb}.fasta"
Length = len(getSeqFromFasta(fastaFile))
info_.append([pdb, Length])
In [96]:
length_info = pd.DataFrame(info_, columns=["Protein", "Length"])
length_info["Protein_and_Length"] = length_info["Protein"] + "_" + length_info["Length"].astype(str)
length_order = length_info.sort_values("Length")["Length"].to_list()
In [112]:
In [104]:
pdb_order = length_info.sort_values("Length")["Protein"].to_list()
pdb_length_order = length_info.sort_values("Length")["Protein_and_Length"].to_list()
data = data.merge(length_info, on="Protein")
data.Protein = pd.Categorical(data.Protein,
categories=pdb_order)
data.Protein_and_Length = pd.Categorical(data.Protein_and_Length,
categories=pdb_length_order)
In [106]:
plt.rcParams['figure.figsize'] = 0.8*np.array([16.18033, 10]) #golden ratio
y = "Q"
d = data
t = d.groupby(["Protein", "subMode"])[y].idxmax().reset_index()
max_Q_data = d.iloc[t[y].to_list()].reset_index(drop=True)
sub_data = max_Q_data
In [123]:
text_ = []
for pdb, length in zip(pdb_order, length_order):
if pdb == "T0172_2":
pdb = "T0172B"
text_.append(f"{pdb}\n{length}")
In [140]:
ax = sns.lineplot(x="Protein_and_Length", y="Q", markers=True, ms=10, style="scheme", hue="scheme", data=sub_data, dashes=False)
plt.xticks(pdb_length_order, length_order)
plt.xlabel("Protein Length")
for i, line in sub_data.query("subMode == 2").reset_index(drop=True).iterrows():
# print(i, line)
# print(line["Protein"], )
plt.annotate(line["Protein"], (i, line["Q"]), fontsize=18)
plt.title("Without Frag memory")
Out[140]:
In [81]:
plt.rcParams['figure.figsize'] = 0.8*np.array([16.18033, 10]) #golden ratio
y = "Q"
d = data
t = d.groupby(["Protein", "subMode"])[y].idxmax().reset_index()
max_Q_data = d.iloc[t[y].to_list()].reset_index(drop=True)
sub_data = max_Q_data
ax = sns.lineplot(x="Protein", y="Q", markers=True, ms=10, style="scheme", hue="scheme", data=sub_data, dashes=False)
In [67]:
plt.rcParams['figure.figsize'] = 0.8*np.array([16.18033, 10]) #golden ratio
y = "Q"
d = data
t = d.groupby(["Protein", "subMode"])[y].idxmax().reset_index()
max_Q_data = d.iloc[t[y].to_list()].reset_index(drop=True)
sub_data = max_Q_data
ax = sns.lineplot(x="Protein", y="Q", markers=True, ms=10, style="scheme", hue="scheme", data=sub_data, dashes=False)
In [ ]:
In [54]:
sns.boxplot("Protein", "Q", hue="subMode", data=data)
Out[54]:
In [14]:
simulationType = "compare_side_chain_with_and_without"
run_n = 10
folder_list = ["side_chain_run1"]
sub_mode_list = [0, 1]
all_data = []
for folder in folder_list:
for pdb in pdb_list:
for i in range(run_n):
for subMode in sub_mode_list:
pre = f"/Users/weilu/Research/server/feb_2020/{simulationType}/{folder}/{pdb}/{subMode}_{i}"
info_file = "info.dat"
location = f"{pre}/{info_file}"
try:
tmp = pd.read_csv(location, sep="\s+")
tmp = tmp.assign(Run=i, Protein=pdb, Folder=folder, subMode=subMode)
all_data.append(tmp)
except:
print(pdb, i, folder)
pass
data = pd.concat(all_data)
today = datetime.today().strftime('%m-%d')
outFile = f"/Users/weilu/Research/data/openMM/{simulationType}_{folder}_{today}.csv"
data.reset_index(drop=True).to_csv(outFile)
print(outFile)
In [15]:
# data = pd.read_csv("/Users/weilu/Research/data/openMM/mass_iterative_run_iteration_0_02-07.csv", index_col=0)
# data = pd.read_csv("/Users/weilu/Research/data/openMM/mass_iterative_run_iteration_1_02-10.csv", index_col=0)
# data = pd.read_csv("/Users/weilu/Research/data/openMM/mass_iterative_run_iteration_2_02-11.csv", index_col=0)
data = pd.read_csv("/Users/weilu/Research/data/openMM/compare_side_chain_with_and_without_side_chain_run1_02-17.csv", index_col=0)
sub_pdb_list = pdb_list
data.Protein = pd.Categorical(data.Protein,
categories=sub_pdb_list)
In [20]:
In [21]:
y = "Q"
d = data
t = d.groupby(["Protein", "subMode"])[y].idxmax().reset_index()
max_Q_data = d.iloc[t[y].to_list()].reset_index(drop=True)
sub_data = max_Q_data
# new_order = max_Q_data.query("Folder == 'iteration_3'").sort_values("Q")["Protein"].unique().to_list()
# sub_data = max_Q_data.sort_values("Q").reset_index(drop=True).reset_index()
# sub_data.Protein = sub_data.Protein.astype(str)
# sub_data.Protein = pd.Categorical(sub_data.Protein,
# categories=new_order)
ax = sns.lineplot(x="Protein", y="Q", markers=True, ms=10, style="subMode", hue="subMode", data=sub_data, dashes=False)
In [16]:
sns.boxplot("Protein", "Q", hue="subMode", data=data)
Out[16]:
In [12]:
sns.boxplot("Protein", "Q", hue="subMode", data=data)
Out[12]:
In [ ]:
a = np.zeros((100,100))
a[:50,:50] = 1
# a[50:,50:] = 2
plt.imshow(a, origin=0, extent=[0,1,0,1])
In [ ]:
a = np.zeros((100,100))
a[:50,:50] = 1
a[50:,50:] = 2
plt.imshow(a, origin=0, extent=[0,1,0,1])