In [3]:
import os
import sys
import random
import time
from random import seed, randint
import argparse
import platform
from datetime import datetime
import imp
import numpy as np
import fileinput
from itertools import product
import pandas as pd
from scipy.interpolate import griddata
from scipy.interpolate import interp2d
import seaborn as sns
from os import listdir

import matplotlib.pyplot as plt
import seaborn as sns
from scipy.interpolate import griddata
import matplotlib as mpl
sys.path.insert(0,'..')
from notebookFunctions import *
# from .. import notebookFunctions

%matplotlib inline
plt.rcParams['figure.figsize'] = (10,6.180)    #golden ratio
# %matplotlib notebook
%load_ext autoreload
%autoreload 2

In [39]:
data = pd.read_feather("/Users/weilu/Research/server/may_2018/second_start_topology/rerun_5_20_May_231514.feather")

dic = {"T0":300, "T1":335, "T2":373, "T3":417, "T4":465, "T5":519, "T6":579, "T7":645, "T8":720, "T9":803, "T10":896, "T11":1000}
a = data
a["Temp"] = a["Temp"].apply(lambda x: dic[x])
rerun7 = data
t = a.query("Temp < 400").groupby(["BiasTo","Temp"])[["DisReal","Run"]].mean().reset_index()
t["Diff"] = t["DisReal"]-t["BiasTo"].apply(pd.to_numeric)
t["BiasTo"] = t["BiasTo"].apply(pd.to_numeric)
fg = sns.FacetGrid(data=t, hue='Temp', size=8, aspect=1.61)
fg.map(plt.scatter, 'BiasTo', 'Diff').add_legend()


Out[39]:
<seaborn.axisgrid.FacetGrid at 0x1ab9aae7b8>

In [64]:
second.query("TempT == 373 and z_h6 < -10").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[64]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a2280f518>

In [61]:
data.query("Temp == 373 and z_h6 < -10").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[61]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a26cb55f8>

In [5]:
data = pd.read_feather("/Users/weilu/Research/server/may_2018/second_long/rerun_5_19_May_220121.feather")

dic = {"T0":300, "T1":335, "T2":373, "T3":417, "T4":465, "T5":519, "T6":579, "T7":645, "T8":720, "T9":803, "T10":896, "T11":1000}
a = data
a["Temp"] = a["Temp"].apply(lambda x: dic[x])
rerun7 = data
t = a.query("Temp < 400").groupby(["BiasTo","Temp"])[["DisReal","Run"]].mean().reset_index()
t["Diff"] = t["DisReal"]-t["BiasTo"].apply(pd.to_numeric)
t["BiasTo"] = t["BiasTo"].apply(pd.to_numeric)
fg = sns.FacetGrid(data=t, hue='Temp', size=8, aspect=1.61)
fg.map(plt.scatter, 'BiasTo', 'Diff').add_legend()


Out[5]:
<seaborn.axisgrid.FacetGrid at 0x111e71048>

In [65]:
# data = pd.read_feather("/Users/weilu/Research/server/may_2018/second_start_topology/rerun_5_20_May_231514.feather")

rerun5 = pd.read_feather("/Users/weilu/Research/server/may_2018/second_start_topology/rerun_5_20_May_231514.feather")
rerun4 = pd.read_feather("/Users/weilu/Research/server/may_2018/second_start_topology/rerun_4_20_May_231514.feather")


data = pd.concat([rerun5, rerun4])
dic = {"T0":300, "T1":335, "T2":373, "T3":417, "T4":465, "T5":519, "T6":579, "T7":645, "T8":720, "T9":803, "T10":896, "T11":1000}
data["TempT"] = data["Temp"].apply(lambda x: dic[x])
chosen = data.query("TempT < 420")
chosen.reset_index().to_feather("/Users/weilu/Research/server/may_2018/03_week/all_data_folder/second_toplogy_may21.feather")

In [6]:
rerun5 = pd.read_feather("/Users/weilu/Research/server/may_2018/second_long/rerun_5_19_May_220121.feather")
rerun4 = pd.read_feather("/Users/weilu/Research/server/may_2018/second_long/rerun_5_19_May_220121.feather")


data = pd.concat([rerun5, rerun4])
dic = {"T0":300, "T1":335, "T2":373, "T3":417, "T4":465, "T5":519, "T6":579, "T7":645, "T8":720, "T9":803, "T10":896, "T11":1000}
data["TempT"] = data["Temp"].apply(lambda x: dic[x])
chosen = data.query("TempT < 420")
chosen.reset_index().to_feather("/Users/weilu/Research/server/may_2018/03_week/all_data_folder/second_long_may19.feather")

In [9]:
data["BiasTo"] = data["BiasTo"].apply(pd.to_numeric)

In [10]:
second = pd.read_feather("/Users/weilu/Research/server/may_2018/03_week/all_data_folder/second_may19.feather")

In [13]:
second["BiasTo"] = second["BiasTo"].apply(pd.to_numeric)

In [67]:
data["Lipid"]


Out[67]:
0          -1.379200
1         -10.366698
2           0.005950
3           0.000861
4         -10.886169
5         -11.202367
6           0.331066
7           0.103148
8           0.076112
9          -1.415516
10          0.198293
11          0.000019
12         -1.667448
13        -12.741957
14          0.002150
15          0.000073
16        -11.801810
17        -11.585144
18          0.009288
19          1.451266
20          0.042900
21          1.173117
22          0.294061
23          0.003312
24         -1.839327
25        -10.497103
26          0.002111
27          0.001882
28        -10.462979
29        -10.260526
             ...    
1079970   -12.151622
1079971     0.000711
1079972     0.025235
1079973     0.220481
1079974    -0.662964
1079975     0.035374
1079976    -1.118715
1079977   -12.630730
1079978    -0.356336
1079979     0.330366
1079980     0.004516
1079981     0.004883
1079982   -11.761289
1079983     0.002006
1079984     0.044407
1079985     0.008311
1079986    -0.120080
1079987     0.005791
1079988    -0.259459
1079989   -11.902009
1079990    -1.278963
1079991     0.780454
1079992     0.006816
1079993     0.025654
1079994   -11.583517
1079995     0.001141
1079996     0.137935
1079997     0.130461
1079998    -0.585364
1079999     0.040653
Name: Lipid, Length: 2160000, dtype: float64

In [11]:
data["BiasTo"].unique()


Out[11]:
array([ 154.,  310.,  226.,  184.,  250.,  322.,  196.,  334.,  214.,
        190.,  148.,  232.,  166.,  280.,  274.,  328.,  112.,  142.,
        256.,  118.,  106.,  292.,  262.,  316.,  268.,  172.,  340.,
        202.,  124.,  244.,  178.,  130.,  136.,  100.,  238.,  298.])

In [15]:
second["BiasTo"].unique()


Out[15]:
array([  86.,   84.,   76.,   72.,   54.,   70.,   50.,   56.,   80.,
         88.,   44.,   46.,   96.,   62.,  110.,   48.,  108.,  106.,
         60.,   40.,   78.,   74.,   66.,   52.,   94.,  104.,   82.,
         98.,   68.,   92.,   64.,   42.,   58.,   90.,  100.,  102.])

In [19]:
chosen = data.query("TempT < 420")

In [27]:
new_chosen = chosen.query("BiasTo != 100.0 and BiasTo != 106")

In [28]:
all_data = pd.concat([new_chosen,second])

In [31]:
all_data.reset_index().to_feather("/Users/weilu/Research/server/may_2018/03_week/all_data_folder/second_start_extended_combined_may19.feather")

In [37]:
all_data.query("TempT == 417 and DisReal < 80").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[37]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a2a557e48>

In [50]:
t =all_data.query("TempT < 427 and DisReal > 50 and DisReal < 60 and z_average < -4 and z_average > -10")
t.plot.hexbin("DisReal", "z_average", cmap="seismic", sharex=False)


Out[50]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a2a236e80>

In [54]:
t.groupby("TempT").count()


Out[54]:
AMH AMH-Go AMH_3H AMH_4H BiasTo DisReal Dis_h56 Distance Energy Lipid ... rg5 rg6 rg_all z_average z_h1 z_h2 z_h3 z_h4 z_h5 z_h6
TempT
300 151 151 151 151 151 151 151 151 151 151 ... 151 151 151 151 151 151 151 151 151 151
335 329 329 329 329 329 329 329 329 329 329 ... 329 329 329 329 329 329 329 329 329 329
373 349 349 349 349 349 349 349 349 349 349 ... 349 349 349 349 349 349 349 349 349 349
417 2172 2172 2172 2172 2172 2172 2172 2172 2172 2172 ... 2172 2172 2172 2172 2172 2172 2172 2172 2172 2172

4 rows × 48 columns


In [52]:
select(t)


Out[52]:
count mean std min 25% 50% 75% max
BiasTo Run
56.0 2 261.0 55.399250 2.763930 50.061805 53.196066 55.473713 57.912662 59.980617
3 110.0 55.243974 2.893852 50.256283 52.795060 55.502294 57.612645 59.954635
6 201.0 55.233279 2.715847 50.113390 52.846465 55.250757 57.554086 59.924936
60.0 3 177.0 55.955219 2.789796 50.472966 53.521423 56.827409 58.247740 59.900033
5 336.0 55.996739 2.602148 50.399247 54.077294 56.169747 58.110151 59.966200
64.0 1 171.0 56.313802 2.647133 50.035076 54.758334 56.907110 58.286677 59.915463
66.0 2 195.0 56.880229 2.378643 50.028126 55.452836 57.282298 58.948349 59.913036
70.0 1 106.0 57.797358 2.006302 52.243703 56.679057 58.357167 59.513907 59.958951

In [29]:
a = all_data.groupby("BiasTo")["AMH_4H"].count()

In [26]:
chosen.query("BiasTo == 100.0").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[26]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a2a806080>

In [25]:
second.query("BiasTo == 100.0").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[25]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a29db79e8>

In [24]:
all_data.query("BiasTo == 100.0").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[24]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a2a8905c0>

In [30]:
a.sort_values()


Out[30]:
BiasTo
40.0     20000
118.0    20000
124.0    20000
130.0    20000
136.0    20000
142.0    20000
148.0    20000
154.0    20000
166.0    20000
172.0    20000
178.0    20000
184.0    20000
190.0    20000
196.0    20000
202.0    20000
214.0    20000
226.0    20000
232.0    20000
328.0    20000
322.0    20000
316.0    20000
310.0    20000
298.0    20000
292.0    20000
112.0    20000
280.0    20000
268.0    20000
262.0    20000
256.0    20000
250.0    20000
         ...  
60.0     20000
58.0     20000
70.0     20000
56.0     20000
52.0     20000
50.0     20000
48.0     20000
46.0     20000
44.0     20000
42.0     20000
54.0     20000
334.0    20000
72.0     20000
76.0     20000
104.0    20000
102.0    20000
100.0    20000
98.0     20000
96.0     20000
94.0     20000
74.0     20000
92.0     20000
88.0     20000
86.0     20000
84.0     20000
82.0     20000
80.0     20000
78.0     20000
90.0     20000
340.0    20000
Name: AMH_4H, Length: 70, dtype: int64

In [ ]:


In [122]:
# data = pd.read_feather("/Users/weilu/Research/server/may_2018/second_long/rerun_1_10_May_231258.feather")
data = pd.read_feather("/Users/weilu/Research/server/may_2018/second_start_topology/rerun_5_14_May_143016.feather")
dic = {"T0":300, "T1":335, "T2":373, "T3":417, "T4":465, "T5":519, "T6":579, "T7":645, "T8":720, "T9":803, "T10":896, "T11":1000}
a = data
a["Temp"] = a["Temp"].apply(lambda x: dic[x])
short2 = data
# t = a.query("Temp < 400").groupby(["BiasTo","Temp"])[["DisReal","Run"]].mean().reset_index()
# t["Diff"] = t["DisReal"]-t["BiasTo"].apply(pd.to_numeric)
# t["BiasTo"] = t["BiasTo"].apply(pd.to_numeric)
# fg = sns.FacetGrid(data=t, hue='Temp', size=8, aspect=1.61)
# fg.map(plt.scatter, 'BiasTo', 'Diff').add_legend()

In [ ]:
# data = pd.read_feather("/Users/weilu/Research/server/may_2018/second_long/rerun_1_10_May_231258.feather")
data = pd.read_feather("/Users/weilu/Research/server/may_2018/second_start_topology_lon")
dic = {"T0":300, "T1":335, "T2":373, "T3":417, "T4":465, "T5":519, "T6":579, "T7":645, "T8":720, "T9":803, "T10":896, "T11":1000}
a = data
a["Temp"] = a["Temp"].apply(lambda x: dic[x])
short = data
# t = a.query("Temp < 400").groupby(["BiasTo","Temp"])[["DisReal","Run"]].mean().reset_index()
# t["Diff"] = t["DisReal"]-t["BiasTo"].apply(pd.to_numeric)
# t["BiasTo"] = t["BiasTo"].apply(pd.to_numeric)
# fg = sns.FacetGrid(data=t, hue='Temp', size=8, aspect=1.61)
# fg.map(plt.scatter, 'BiasTo', 'Diff').add_legend()

In [113]:
# data = pd.read_feather("/Users/weilu/Research/server/may_2018/second_long/rerun_1_10_May_231258.feather")
data = pd.read_feather("/Users/weilu/Research/server/may_2018/02_week/all_data_folder/second_rerun3_with_goEnergyrerun_7_14_May_124103.feather")
dic = {"T0":300, "T1":335, "T2":373, "T3":417, "T4":465, "T5":519, "T6":579, "T7":645, "T8":720, "T9":803, "T10":896, "T11":1000}
a = data
a["Temp"] = a["Temp"].apply(lambda x: dic[x])
short = data
# t = a.query("Temp < 400").groupby(["BiasTo","Temp"])[["DisReal","Run"]].mean().reset_index()
# t["Diff"] = t["DisReal"]-t["BiasTo"].apply(pd.to_numeric)
# t["BiasTo"] = t["BiasTo"].apply(pd.to_numeric)
# fg = sns.FacetGrid(data=t, hue='Temp', size=8, aspect=1.61)
# fg.map(plt.scatter, 'BiasTo', 'Diff').add_legend()

In [115]:
data = pd.read_feather("/Users/weilu/Research/server/may_2018/second_long/rerun_5_14_May_155146.feather")
# data = pd.read_feather("/Users/weilu/Research/server/may_2018/02_week/all_data_folder/second_rerun3_with_goEnergyrerun_7_14_May_124103.feather")
dic = {"T0":300, "T1":335, "T2":373, "T3":417, "T4":465, "T5":519, "T6":579, "T7":645, "T8":720, "T9":803, "T10":896, "T11":1000}
a = data
a["Temp"] = a["Temp"].apply(lambda x: dic[x])
long = data
# t = a.query("Temp < 400").groupby(["BiasTo","Temp"])[["DisReal","Run"]].mean().reset_index()
# t["Diff"] = t["DisReal"]-t["BiasTo"].apply(pd.to_numeric)
# t["BiasTo"] = t["BiasTo"].apply(pd.to_numeric)
# fg = sns.FacetGrid(data=t, hue='Temp', size=8, aspect=1.61)
# fg.map(plt.scatter, 'BiasTo', 'Diff').add_legend()

In [28]:
data2['BiasTo'].unique()


Out[28]:
array(['86.0', '84.0', '76.0', '72.0', '54.0', '70.0', '50.0', '56.0',
       '80.0', '88.0', '44.0', '46.0', '96.0', '62.0', '110.0', '48.0',
       '108.0', '106.0', '60.0', '40.0', '78.0', '74.0', '66.0', '52.0',
       '94.0', '104.0', '82.0', '98.0', '68.0', '92.0', '64.0', '42.0',
       '58.0', '90.0', '100.0', '102.0'], dtype=object)

In [24]:
data = pd.read_feather("/Users/weilu/Research/server/may_2018/02_week/all_data_folder/second_longrerun_5_14_May_155146.feather")

In [30]:
d = data.query("BiasTo != '100.0'")

In [36]:
d.reset_index().to_feather("/Users/weilu/Research/server/may_2018/02_week/all_data_folder/second_longrerun_5.feather")

In [116]:
test = pd.concat([short,long])

In [111]:
test


Out[111]:
Step Run Temp Qw Energy DisReal Dis_h56 z_average abs_z_average z_h1 ... Lipid8 Lipid9 Lipid10 Lipid11 Lipid12 Lipid13 Lipid14 Lipid15 TotalE BiasTo
0 70004000 0 T2 0.344891 -714.949919 79.004676 28.346208 -1.033087 10.459095 2.494844 ... -2.084318e+00 2.346937e-01 -1.337732e+00 6.655914e-01 -2.050805e+00 -1.839279e+00 -2.145211e+00 1.020202e-01 -725.288756 86.0
1 70004000 1 T9 0.074391 550.937170 89.599739 25.440469 -7.789718 17.366273 4.765997 ... 2.033026e-03 8.737876e-08 2.910923e-08 3.491860e-06 1.500789e-10 1.872073e-04 3.791031e-08 3.502116e-05 550.944761 86.0
2 70004000 2 T0 0.374740 -863.891967 76.611795 26.503922 -0.743387 10.678578 1.148260 ... -1.695295e+00 -3.015328e-01 -1.677543e+00 5.288776e-01 -2.167341e+00 -1.493340e+00 -2.136691e+00 -4.302086e-02 -875.678992 86.0
3 70004000 3 T8 0.075090 338.346018 72.727068 22.924835 -10.544771 13.357617 -0.639985 ... 2.084583e-03 6.893059e-06 3.658454e-07 2.889517e-05 9.554722e-08 3.656177e-03 7.404465e-08 2.709172e-03 338.361391 86.0
4 70004000 4 T4 0.129997 -453.492645 90.462006 13.296131 -5.915804 14.492202 0.453000 ... 2.085799e-03 2.085729e-03 3.340727e-10 7.377582e-07 7.377334e-07 2.847047e-04 1.799118e-04 -1.994958e+00 -456.707030 86.0
5 70004000 5 T7 0.093361 0.926129 77.627676 23.875425 -14.320564 19.155982 2.700147 ... 1.344401e-07 3.170347e-07 1.299597e-13 5.895453e-12 1.390257e-11 6.743875e-11 4.520390e-13 2.486046e-10 0.928251 86.0
6 70004000 6 T5 0.102470 -293.632086 74.849277 49.791149 -8.230541 16.181114 2.583086 ... 2.075633e-03 8.742616e-06 9.497231e-09 2.875009e-06 1.210961e-08 -1.612528e-04 4.312008e-07 1.436431e-03 -293.623559 86.0
7 70004000 7 T6 0.095798 -220.283608 91.184059 55.075477 -9.518047 14.370012 1.121599 ... 2.049120e-03 5.584983e-06 1.324686e-07 6.389935e-05 1.741610e-07 1.607004e-03 1.137705e-08 1.009539e-03 -220.260821 86.0
8 70004000 8 T11 0.056165 1010.458757 102.152629 32.092007 -18.177877 18.177877 -10.344521 ... 1.978745e-03 1.703966e-08 2.798600e-06 5.622947e-05 4.842115e-10 6.769069e-05 3.062124e-12 6.322492e-06 1010.481151 86.0
9 70004000 9 T3 0.344723 -629.877271 77.891836 27.000805 -1.308511 10.402246 0.446359 ... -1.761242e+00 -3.180369e-01 -1.650612e+00 4.250447e-01 -2.132697e+00 -2.079390e+00 -2.150774e+00 -9.006130e-01 -643.118859 86.0
10 70004000 10 T10 0.074114 718.339920 91.485540 16.108886 -15.498182 16.418393 -10.782922 ... 2.027140e-03 5.446663e-07 4.157533e-07 1.074254e-05 2.886382e-09 1.567681e-04 4.198586e-08 8.840893e-05 718.346911 86.0
11 70004000 11 T1 0.367796 -808.283812 76.310309 23.970832 -0.404976 10.915367 0.186463 ... -1.391683e+00 -2.803622e-01 -1.567137e+00 4.305658e-01 -2.141017e+00 -1.844642e+00 -2.146233e+00 -5.750738e-01 -820.881666 86.0
12 70008000 0 T2 0.329076 -722.068300 83.372854 18.937570 -2.802593 10.760997 0.773482 ... -1.332202e+00 4.046347e-01 -1.849445e+00 7.370681e-01 -2.022072e+00 -1.579770e+00 -2.115825e+00 -6.024791e-02 -731.938551 86.0
13 70008000 1 T9 0.064722 565.008524 83.660056 42.224569 -10.622840 19.547114 4.713588 ... 4.367262e-04 2.185163e-07 8.275069e-10 2.523508e-09 1.262639e-12 4.462755e-05 1.308170e-08 7.678480e-06 565.011512 86.0
14 70008000 2 T0 0.397362 -875.315412 77.138549 23.965611 -2.526055 10.815660 0.828463 ... -1.716887e+00 -1.019403e-01 -1.371076e+00 5.344056e-01 -1.952150e+00 -1.773872e+00 -2.060829e+00 -9.143701e-02 -886.647456 86.0
15 70008000 3 T8 0.077726 340.404542 91.592356 29.770207 -11.931332 14.889727 1.357802 ... 1.956220e-03 1.591734e-06 4.770956e-06 2.762858e-06 2.248079e-09 8.992893e-06 7.317325e-09 6.706853e-04 340.411279 86.0
16 70008000 4 T4 0.117219 -466.571009 97.081220 16.423045 -7.844127 15.367691 -1.828956 ... 2.079146e-03 2.074875e-03 1.201264e-09 4.734889e-08 4.725163e-08 5.120812e-05 2.808095e-04 -1.146536e+00 -468.735190 86.0
17 70008000 5 T7 0.090055 -0.580226 86.470940 25.596190 -16.624426 21.006597 1.459776 ... 3.605722e-08 1.146228e-07 4.863097e-12 1.837415e-13 5.840984e-13 1.592180e-10 1.304655e-12 -1.553624e-09 -0.578574 86.0
18 70008000 6 T5 0.105275 -290.175849 95.748767 53.566561 -10.987425 18.111346 3.408415 ... 1.856000e-03 9.285135e-07 7.145339e-09 4.517279e-08 2.259889e-11 -1.534212e-03 2.876714e-09 1.121735e-04 -290.171457 86.0
19 70008000 7 T6 0.097891 -162.209293 83.438189 52.347882 -11.613314 15.807917 1.976416 ... 1.822806e-03 6.632950e-07 3.563947e-07 3.115058e-06 1.133528e-09 2.109565e-03 2.524992e-09 1.669599e-04 -162.200991 86.0
20 70008000 8 T11 0.062129 882.321121 84.138217 39.295188 -20.292435 20.292435 -9.915171 ... 1.062340e-04 2.672659e-08 1.312769e-08 5.685133e-08 1.430279e-11 3.353935e-07 1.399018e-12 8.567841e-07 882.322941 86.0
21 70008000 9 T3 0.302283 -617.038543 81.804196 22.570860 -2.516296 11.323648 2.376668 ... -1.450488e+00 -6.848077e-02 -1.179792e+00 6.056163e-01 -1.775826e+00 -1.982049e+00 -2.033298e+00 -8.230895e-01 -628.288762 86.0
22 70008000 10 T10 0.070780 685.761417 87.341878 16.176984 -17.730130 17.958330 -8.412565 ... 1.973298e-03 1.293953e-08 6.893676e-09 2.569282e-07 1.684758e-12 1.742021e-05 2.505352e-10 4.482602e-06 685.767453 86.0
23 70008000 11 T1 0.360861 -815.887543 79.692817 24.642406 -2.113954 10.777854 1.318628 ... -2.070205e+00 -3.436266e-01 -1.541651e+00 6.137675e-02 -1.977171e+00 -1.935761e+00 -2.087915e+00 -5.041639e-01 -829.372231 86.0
24 70012000 0 T2 0.316504 -709.820249 89.521842 22.380344 -2.171087 10.495719 1.730007 ... -2.071928e+00 1.938721e-01 -1.345055e+00 6.011608e-01 -1.725563e+00 -1.806137e+00 -2.113358e+00 -1.260594e-01 -720.532338 86.0
25 70012000 1 T9 0.067890 486.139207 85.546848 29.541128 -11.246585 18.279374 5.358363 ... 1.397178e-03 2.849388e-05 1.278546e-11 2.541779e-09 5.183676e-11 2.308503e-05 2.781907e-07 -2.178477e-02 486.122348 86.0
26 70012000 2 T0 0.387002 -871.712350 80.956135 25.333072 -1.968650 10.414568 2.601144 ... -8.695211e-01 4.496583e-02 -1.522707e+00 4.805584e-01 -2.167369e+00 -1.694709e+00 -2.087979e+00 -5.324184e-01 -882.323374 86.0
27 70012000 3 T8 0.071981 345.631146 83.041429 23.898796 -12.342156 15.720797 4.037202 ... 1.337892e-03 2.984582e-06 1.120225e-07 8.807223e-07 1.964724e-09 4.982202e-04 6.948582e-09 1.227547e-03 345.637797 86.0
28 70012000 4 T4 0.127058 -497.411758 93.958716 17.091713 -7.401450 14.383706 -0.514790 ... 2.073228e-03 2.071328e-03 6.782607e-10 6.685606e-08 6.679477e-08 1.813407e-03 3.296223e-03 -2.087568e+00 -499.644421 86.0
29 70012000 5 T7 0.087921 -40.953354 81.434849 18.103784 -17.102754 20.665577 3.668741 ... 1.016748e-08 5.622369e-09 6.163608e-13 1.902243e-14 1.051894e-14 8.027077e-10 5.184280e-12 -2.712598e-11 -40.951466 86.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1079970 59992000 6 T5 0.073573 -313.279481 276.106988 65.934244 -18.269275 18.269275 -19.952421 ... 1.987507e-03 2.880296e-06 3.934458e-10 2.659665e-07 3.854388e-10 3.079681e-06 4.463075e-09 3.017006e-06 -313.277419 298.0
1079971 59992000 7 T8 0.044969 397.072504 273.420640 57.004368 -19.223966 19.232446 -21.274160 ... 1.988968e-03 4.511452e-08 2.284302e-07 4.641004e-06 1.052690e-10 1.017090e-04 2.307003e-09 4.687125e-08 397.074722 298.0
1079972 59992000 8 T11 0.042194 783.751311 266.355530 62.034444 -22.238459 22.247099 -31.357211 ... 2.042738e-03 8.835019e-07 8.075481e-12 3.342927e-07 1.445845e-10 5.036976e-08 2.178536e-11 2.864782e-05 783.753401 298.0
1079973 59992000 9 T7 0.062096 56.963461 273.616943 68.092503 -20.847467 20.847467 -27.034893 ... 1.592878e-03 1.111514e-06 1.331897e-09 2.385810e-07 1.664824e-10 1.162303e-05 8.110579e-09 1.452837e-06 56.965078 298.0
1079974 59992000 10 T4 0.077601 -429.301816 274.731210 67.332098 -18.546077 18.546077 -22.424905 ... 1.218092e-03 1.129472e-06 1.364379e-07 3.611745e-06 3.348979e-09 7.248851e-05 6.721474e-08 1.779289e-06 -429.300425 298.0
1079975 59992000 11 T10 0.032438 740.754791 269.425160 67.603104 -20.560783 20.560783 -28.237954 ... 2.014807e-03 4.232456e-07 7.440335e-08 1.806883e-06 3.795674e-10 8.586927e-05 1.803835e-08 4.380606e-07 740.757023 298.0
1079976 59996000 0 T3 0.081397 -557.127624 283.708541 70.735680 -18.919067 18.919067 -15.977060 ... 1.348129e-03 1.441772e-06 4.416469e-08 5.256475e-06 5.621598e-09 1.194131e-05 1.277077e-08 1.519975e-06 -557.125384 298.0
1079977 59996000 1 T1 0.078622 -684.895873 286.482560 75.803562 -16.886172 16.886172 -13.576543 ... 1.518077e-03 1.940321e-05 1.369043e-07 8.703493e-06 1.112432e-07 1.964140e-05 2.510453e-07 1.595984e-05 -684.889835 298.0
1079978 59996000 2 T2 0.082806 -622.608342 282.856238 70.637120 -17.801197 17.801197 -13.107993 ... 4.738194e-04 9.946197e-06 3.938047e-07 3.120410e-06 6.550221e-08 2.353714e-05 4.940807e-07 3.914972e-06 -622.605191 298.0
1079979 59996000 3 T6 0.061926 -249.785082 283.200185 73.303271 -19.929857 19.929857 -18.199306 ... 1.321389e-03 7.369844e-07 3.314589e-08 1.287663e-05 7.181743e-09 3.467430e-06 1.933906e-09 7.512905e-07 -249.783316 298.0
1079980 59996000 4 T0 0.083391 -804.420681 285.179770 73.634215 -16.788543 16.793807 -14.038913 ... 6.332773e-04 3.433119e-05 2.055954e-07 2.811579e-06 1.524211e-07 1.466193e-05 7.948517e-07 1.086984e-05 -804.416565 298.0
1079981 59996000 5 T9 0.044021 609.801262 272.197063 59.193886 -21.753416 21.753416 -22.668585 ... 1.904849e-03 1.411541e-07 5.494557e-10 6.748116e-07 5.000522e-11 4.605128e-05 1.219423e-10 1.497630e-07 609.803221 298.0
1079982 59996000 6 T5 0.077095 -312.216387 280.332675 72.489877 -18.390756 18.390756 -14.910382 ... 1.860399e-03 8.295980e-06 5.086357e-09 1.460074e-06 6.510833e-09 6.579688e-06 2.934047e-08 8.422383e-06 -312.212703 298.0
1079983 59996000 7 T8 0.048750 377.667891 275.328210 59.629305 -19.316039 19.316039 -16.071894 ... 1.600397e-03 1.266857e-07 5.988589e-07 6.632470e-06 5.250194e-10 5.870550e-04 9.140537e-09 1.012331e-07 377.671162 298.0
1079984 59996000 8 T11 0.043687 804.231375 272.234713 51.858134 -22.250018 22.250018 -23.871536 ... 1.947051e-03 3.792588e-07 5.121276e-10 7.198557e-07 1.402180e-10 1.427329e-06 2.780240e-10 6.318274e-05 804.233392 298.0
1079985 59996000 9 T7 0.064760 37.673698 277.464487 75.693124 -21.130555 21.130555 -21.163764 ... 1.392575e-03 9.068663e-08 2.694312e-08 1.448255e-06 9.431257e-11 3.861043e-05 2.514370e-09 1.351532e-07 37.675175 298.0
1079986 59996000 10 T4 0.079549 -420.883111 282.824961 69.631112 -18.683701 18.683701 -18.254623 ... 8.328001e-04 9.086983e-07 5.927038e-07 6.432979e-06 7.019255e-09 2.181240e-04 1.358106e-07 1.474036e-06 -420.881567 298.0
1079987 59996000 11 T10 0.043415 691.015376 276.151186 58.241278 -20.419376 20.419376 -22.808192 ... 1.959189e-03 7.319684e-07 2.168833e-07 4.504637e-06 1.682968e-09 9.744127e-05 3.640482e-08 1.631738e-05 691.017559 298.0
1079988 60000000 0 T3 0.084263 -533.466492 281.930954 73.439028 -18.264968 18.264968 -15.004228 ... 5.896951e-06 5.059762e-05 2.102358e-08 3.744289e-08 3.212714e-07 9.584269e-08 8.223593e-07 1.464618e-06 -533.466023 298.0
1079989 60000000 1 T1 0.080537 -688.717684 285.387732 79.592231 -16.470108 16.470108 -15.019512 ... 2.661912e-05 3.294911e-04 2.867572e-07 1.627100e-07 2.014022e-06 1.196212e-06 1.480670e-05 8.401522e-06 -688.715118 298.0
1079990 60000000 2 T2 0.085789 -621.902348 281.651164 66.380433 -18.085046 18.085046 -16.094311 ... 2.301044e-06 4.005567e-05 1.215777e-07 2.888395e-08 5.028003e-07 1.588794e-07 2.765709e-06 6.570663e-07 -621.901907 298.0
1079991 60000000 3 T6 0.072996 -208.029830 283.534584 80.894323 -18.947869 18.947869 -15.839125 ... 5.059718e-06 3.530037e-05 2.284674e-08 6.459702e-08 4.506770e-07 1.971003e-08 1.375119e-07 3.888019e-07 -208.029374 298.0
1079992 60000000 4 T0 0.083996 -807.143735 284.608428 70.036738 -16.652234 16.652234 -14.366466 ... 8.970227e-05 4.016139e-04 5.385865e-08 3.920323e-07 1.755203e-06 1.520548e-06 6.807778e-06 4.955321e-05 -807.141094 298.0
1079993 60000000 5 T9 0.047280 523.586437 270.605913 63.169871 -21.034747 21.034747 -19.018523 ... 1.131985e-04 2.047712e-05 1.468269e-10 2.625036e-07 4.748579e-08 3.166090e-08 5.727322e-09 3.506989e-04 523.586964 298.0
1079994 60000000 6 T5 0.080979 -274.266962 286.547213 77.907622 -18.202546 18.202546 -15.170399 ... 6.590094e-06 1.584962e-04 4.732189e-08 5.553373e-08 1.335624e-06 9.641398e-08 2.319072e-06 2.721505e-06 -274.266056 298.0
1079995 60000000 7 T8 0.057110 267.645798 278.962152 63.906589 -18.766741 18.766741 -13.748578 ... 1.819756e-06 3.374579e-05 1.074201e-06 1.915398e-08 3.551938e-07 5.414728e-07 1.004114e-05 3.580976e-06 267.646780 298.0
1079996 60000000 8 T11 0.039985 864.192246 278.414141 70.062467 -21.296150 21.296150 -18.696881 ... 1.570611e-05 9.158167e-05 3.075649e-09 5.848739e-09 3.410374e-08 3.511995e-07 2.047829e-06 3.669526e-05 864.192470 298.0
1079997 60000000 9 T7 0.063787 76.188130 283.227612 72.057657 -20.332592 20.332592 -16.195647 ... 4.458625e-06 2.685000e-06 1.410948e-07 2.631940e-08 1.584964e-08 2.317111e-06 1.395373e-06 2.602886e-07 76.188292 298.0
1079998 60000000 10 T4 0.078956 -444.563341 283.123714 70.835059 -18.031549 18.031549 -14.811058 ... 4.110388e-06 1.187578e-05 1.617920e-07 1.499004e-07 4.330939e-07 3.149023e-07 9.098193e-07 8.429480e-07 -444.562984 298.0
1079999 60000000 11 T10 0.047634 638.933570 271.515692 61.089753 -19.802783 19.802783 -18.509970 ... 2.700250e-05 2.760727e-04 8.797678e-08 7.240921e-08 7.403095e-07 1.139706e-06 1.165232e-05 3.150290e-04 638.934363 298.0

2160000 rows × 45 columns


In [117]:
test.query("Temp == 300")


Out[117]:
Step Run Temp Qw Energy DisReal Dis_h56 z_average abs_z_average z_h1 ... Lipid8 Lipid9 Lipid10 Lipid11 Lipid12 Lipid13 Lipid14 Lipid15 TotalE BiasTo
2 70004000 2 300 0.374740 -863.891967 76.611795 26.503922 -0.743387 10.678578 1.148260 ... -1.695295 -0.301533 -1.677543e+00 5.288776e-01 -2.167341e+00 -1.493340e+00 -2.136691e+00 -0.043021 -875.678992 86.0
14 70008000 2 300 0.397362 -875.315412 77.138549 23.965611 -2.526055 10.815660 0.828463 ... -1.716887 -0.101940 -1.371076e+00 5.344056e-01 -1.952150e+00 -1.773872e+00 -2.060829e+00 -0.091437 -886.647456 86.0
26 70012000 2 300 0.387002 -871.712350 80.956135 25.333072 -1.968650 10.414568 2.601144 ... -0.869521 0.044966 -1.522707e+00 4.805584e-01 -2.167369e+00 -1.694709e+00 -2.087979e+00 -0.532418 -882.323374 86.0
38 70016000 2 300 0.377561 -885.108499 73.943124 25.206944 -0.000778 10.583852 3.709484 ... -0.754464 0.102088 -1.570359e+00 4.479693e-01 -2.082849e+00 -1.905495e+00 -2.157562e+00 -0.573480 -896.174727 86.0
50 70020000 2 300 0.387548 -890.930912 82.436955 24.607747 -0.596535 10.717503 3.392905 ... -1.782655 -0.493326 -1.528588e+00 3.841746e-01 -2.156274e+00 -1.802041e+00 -2.157187e+00 -0.044388 -903.521734 86.0
62 70024000 2 300 0.360170 -855.621336 87.391587 27.837164 -2.721245 10.804574 -0.538624 ... -1.794812 -0.040033 -1.307983e+00 6.164118e-01 -2.138361e+00 -1.672711e+00 -2.046097e+00 -0.044642 -866.375312 86.0
74 70028000 2 300 0.382668 -865.830228 74.656855 24.028541 -2.579924 10.471648 -2.703427 ... -0.542538 -0.189456 -1.287281e+00 4.830591e-01 -2.099112e+00 -1.748483e+00 -2.102612e+00 -1.092022 -876.972364 86.0
86 70032000 2 300 0.358181 -855.109816 77.729291 26.137374 -1.166513 10.876044 0.681142 ... -0.694377 -0.188883 -1.188808e+00 4.932314e-01 -1.911783e+00 -1.590911e+00 -2.115262e+00 -0.900568 -865.913313 86.0
98 70036000 2 300 0.383190 -856.361765 90.591477 27.136865 -1.333228 10.940704 1.794013 ... -1.845085 -0.324527 -1.662169e+00 3.228261e-01 -2.162613e+00 -1.730563e+00 -2.105569e+00 -0.244045 -869.038671 86.0
110 70040000 2 300 0.407176 -863.738497 78.360807 24.524206 -1.245293 10.418603 1.124429 ... -1.314972 -0.641077 -1.707932e+00 6.756195e-01 -2.160101e+00 -1.551772e+00 -2.144681e+00 -0.257173 -875.966948 86.0
122 70044000 2 300 0.368865 -858.981697 75.762749 25.785919 -1.206516 10.473373 -1.360886 ... -1.691631 -0.232427 -1.698297e+00 1.599787e-01 -2.139653e+00 -1.914205e+00 -2.148045e+00 -0.633935 -872.214467 86.0
134 70048000 2 300 0.377606 -890.086749 77.269333 26.647002 -2.501122 10.167298 -2.456400 ... -1.611952 0.107762 -1.442339e+00 3.644550e-01 -2.091753e+00 -1.859885e+00 -2.132944e+00 -0.319607 -901.212004 86.0
146 70052000 2 300 0.401102 -856.573007 84.646826 24.702509 -1.877656 10.184774 -0.754819 ... -1.471472 -0.134186 -1.535154e+00 3.812124e-01 -2.101028e+00 -1.746447e+00 -2.134677e+00 -0.443337 -868.375534 86.0
158 70056000 2 300 0.377547 -861.591897 82.233540 24.599639 -0.949208 10.923557 3.466467 ... -1.566313 -0.479839 -1.561620e+00 2.085410e-01 -2.152818e+00 -1.955701e+00 -2.129923e+00 -0.548545 -875.041087 86.0
170 70060000 2 300 0.372236 -874.585101 87.943526 26.021492 -0.951577 11.144482 4.438562 ... -1.862075 -0.101851 -1.613244e+00 2.467587e-01 -2.166079e+00 -1.801859e+00 -2.120382e+00 -0.314696 -886.779014 86.0
182 70064000 2 300 0.355754 -840.496512 75.358457 25.357079 -0.815579 10.686488 1.366107 ... -0.990795 -0.100947 -1.417340e+00 8.169634e-01 -2.044314e+00 -1.409869e+00 -2.149962e+00 0.314175 -850.226610 86.0
194 70068000 2 300 0.397287 -862.143321 78.798936 25.982543 -1.985261 10.385192 0.255638 ... -1.231765 -0.335477 -1.492802e+00 4.078105e-01 -2.161096e+00 -1.849786e+00 -2.113853e+00 -0.728853 -874.357694 86.0
206 70072000 2 300 0.377925 -875.885438 77.309887 24.665666 -2.775166 10.684976 -1.909109 ... -0.992306 -0.601754 -1.615329e+00 7.743458e-01 -2.124833e+00 -1.536682e+00 -2.116587e+00 -0.572708 -887.221723 86.0
218 70076000 2 300 0.393219 -862.721541 87.613187 25.805488 -2.573121 10.683316 -2.618081 ... -1.207911 -0.020419 -1.412719e+00 4.784169e-01 -1.990647e+00 -1.718069e+00 -2.087737e+00 -0.435261 -873.947547 86.0
230 70080000 2 300 0.375080 -854.394329 90.069019 22.256881 -2.422958 10.579067 -0.057193 ... -1.429840 -0.243013 -1.608273e+00 5.064849e-01 -2.082756e+00 -1.908121e+00 -2.133334e+00 -0.724135 -866.587163 86.0
242 70084000 2 300 0.376749 -871.461102 86.677907 27.493154 -2.425316 10.859199 2.057296 ... -1.332962 -0.169529 -1.669839e+00 4.186954e-01 -2.160637e+00 -1.827929e+00 -2.085544e+00 -0.462723 -883.449164 86.0
254 70088000 2 300 0.376290 -856.067700 84.964084 23.387276 -2.393338 10.971788 0.326307 ... -1.667912 -0.087682 -1.667457e+00 6.341877e-01 -2.081986e+00 -1.768369e+00 -2.100247e+00 -0.216936 -867.635922 86.0
266 70092000 2 300 0.393210 -872.075647 81.924361 26.509596 -1.776054 10.409716 0.687631 ... -1.791347 -0.189331 -1.359956e+00 4.200155e-01 -2.097352e+00 -2.072513e+00 -2.135690e+00 -0.614636 -884.608828 86.0
278 70096000 2 300 0.374938 -872.880541 81.152460 24.253457 -1.673710 10.601547 0.084325 ... -1.426285 -0.008124 -1.388848e+00 6.365147e-01 -2.015518e+00 -1.466469e+00 -2.095433e+00 -0.113853 -883.480314 86.0
290 70100000 2 300 0.407604 -866.938505 83.098036 28.370409 -1.518546 10.392133 0.947632 ... -1.709882 -0.382316 -1.541703e+00 5.914996e-01 -2.159017e+00 -1.660800e+00 -2.139701e+00 -0.164236 -878.869333 86.0
302 70104000 2 300 0.390894 -840.957292 80.695126 25.615074 -1.440675 10.290028 0.990691 ... -1.087523 -0.072423 -1.441290e+00 4.224609e-01 -2.024027e+00 -1.795586e+00 -2.143261e+00 -0.706521 -852.438616 86.0
314 70108000 2 300 0.382966 -844.278573 87.026582 26.258640 -0.903660 10.440221 1.596847 ... -0.939170 -0.061472 -1.600729e+00 2.694398e-01 -2.117404e+00 -1.876220e+00 -2.135763e+00 -0.894012 -856.356031 86.0
326 70112000 2 300 0.397347 -827.767375 83.609230 24.893387 -1.695060 10.465915 -1.775041 ... -1.457648 -0.380666 -1.515210e+00 6.378674e-01 -2.159382e+00 -1.652996e+00 -2.140399e+00 -0.225685 -839.393659 86.0
338 70116000 2 300 0.378473 -850.516754 85.179626 24.151433 -2.056792 11.203531 -2.408520 ... -1.345485 -0.467693 -1.610951e+00 5.440086e-01 -2.165532e+00 -1.796893e+00 -2.120862e+00 -0.486697 -862.773241 86.0
350 70120000 2 300 0.394052 -845.800786 82.410366 23.900226 -2.940372 10.851806 -2.152594 ... -1.504737 -0.138487 -1.425320e+00 4.397182e-01 -2.140771e+00 -2.012987e+00 -2.084275e+00 -0.631836 -857.703907 86.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1079644 59884000 4 300 0.084354 -775.080487 287.779884 77.402034 -18.199011 18.282535 -17.696515 ... 0.000719 0.000023 5.514798e-11 3.792538e-08 1.203796e-09 3.896745e-07 1.236873e-08 0.000009 -775.079438 298.0
1079656 59888000 4 300 0.082186 -776.856032 285.751279 77.298986 -17.662721 17.676187 -15.044012 ... 0.000283 0.000141 1.251958e-10 4.485308e-08 2.225771e-08 2.449510e-07 1.215535e-07 0.000044 -776.854561 298.0
1079668 59892000 4 300 0.084407 -812.377263 278.371239 74.714161 -17.284410 17.284410 -14.700001 ... 0.000403 0.000079 3.099077e-09 2.570509e-07 5.064810e-08 4.918016e-06 9.690226e-07 0.000080 -812.375630 298.0
1079680 59896000 4 300 0.082457 -801.585356 281.269678 75.765312 -16.486448 16.501824 -17.521722 ... 0.001445 0.000073 4.498597e-07 4.822176e-06 2.433320e-07 1.250771e-04 6.311521e-06 0.000068 -801.582044 298.0
1079692 59900000 4 300 0.086612 -799.571963 279.657370 74.622916 -15.879760 15.962631 -15.728659 ... 0.001511 0.000131 4.342297e-06 1.072349e-05 9.310891e-07 4.526521e-04 3.930244e-05 0.000097 -799.562206 298.0
1079704 59904000 4 300 0.085502 -796.938626 282.172482 72.317624 -16.001016 16.016586 -16.318192 ... 0.001474 0.000233 5.204781e-06 1.162192e-05 1.839414e-06 4.956802e-04 7.845180e-05 0.000175 -796.928436 298.0
1079716 59908000 4 300 0.084448 -756.651757 282.977314 72.826245 -16.074508 16.082000 -17.341858 ... 0.001730 0.000152 7.065979e-07 4.731796e-06 4.162153e-07 2.919996e-04 2.568468e-05 0.000172 -756.647087 298.0
1079728 59912000 4 300 0.079148 -810.669508 284.622398 72.115996 -16.239455 16.252408 -16.291124 ... 0.001589 0.000070 3.058537e-08 8.128635e-07 3.567960e-08 5.083675e-05 2.231414e-06 0.000059 -810.666318 298.0
1079740 59916000 4 300 0.082206 -784.544835 281.193343 71.378011 -16.852898 16.881628 -16.146355 ... 0.000928 0.000011 1.763347e-07 9.514976e-07 1.110000e-08 1.040318e-04 1.213617e-06 0.000007 -784.542682 298.0
1079752 59920000 4 300 0.078602 -836.772566 283.019314 68.792579 -16.218678 16.296411 -20.082507 ... 0.001805 0.000023 5.105018e-07 4.288462e-06 5.511943e-08 1.965396e-04 2.526115e-06 0.000021 -836.769714 298.0
1079764 59924000 4 300 0.083789 -787.887420 285.344759 71.926161 -15.808709 15.808709 -19.134859 ... 0.001980 0.000204 2.943121e-08 3.808113e-06 3.929381e-07 1.538908e-05 1.587914e-06 0.000205 -787.884304 298.0
1079776 59928000 4 300 0.076281 -774.583529 286.547469 72.368723 -15.383241 15.383241 -16.452833 ... 0.001569 0.001040 4.654809e-07 2.071844e-05 1.373032e-05 4.639064e-05 3.074356e-05 0.001368 -774.578013 298.0
1079788 59932000 4 300 0.080861 -782.816295 286.705464 70.192622 -15.490492 15.490492 -17.465859 ... 0.001755 0.000676 2.261632e-06 6.005569e-05 2.312550e-05 6.610844e-05 2.545621e-05 0.000676 -782.812178 298.0
1079800 59936000 4 300 0.086068 -790.133228 284.655603 66.850634 -15.985937 15.985937 -16.517137 ... 0.001856 0.000569 1.356293e-07 6.964295e-05 2.134319e-05 3.729230e-06 1.142882e-06 0.000587 -790.121688 298.0
1079812 59940000 4 300 0.088338 -801.879396 282.681676 66.928082 -16.775520 16.775520 -17.310548 ... 0.001639 0.000272 4.684660e-09 7.033282e-06 1.168914e-06 1.264306e-06 2.101245e-07 0.000315 -801.876035 298.0
1079824 59944000 4 300 0.086552 -785.308234 280.179343 67.742228 -17.293279 17.293279 -17.714734 ... 0.001770 0.000057 2.231280e-09 1.906360e-06 6.181722e-08 1.965328e-06 6.372939e-08 0.000054 -785.305743 298.0
1079836 59948000 4 300 0.090282 -838.355306 276.486601 66.702754 -16.124197 16.149356 -17.643619 ... 0.002014 0.000015 7.866857e-08 9.610313e-06 7.094090e-08 1.684323e-05 1.243325e-07 0.000015 -838.351830 298.0
1079848 59952000 4 300 0.083663 -815.573175 285.492400 71.006337 -15.217215 15.248830 -16.942130 ... 0.001905 0.000180 1.168916e-06 1.344173e-05 1.267050e-06 1.740939e-04 1.641051e-05 0.000189 -815.566645 298.0
1079860 59956000 4 300 0.078700 -784.315345 286.803500 72.748098 -14.924881 15.022585 -14.626690 ... 0.001443 0.000726 5.590797e-07 3.313196e-06 1.666695e-06 1.743485e-04 8.770559e-05 0.000520 -784.308572 298.0
1079872 59960000 4 300 0.084674 -782.316923 285.143222 67.874467 -15.712447 15.774535 -14.396374 ... 0.001393 0.000986 3.597906e-08 2.382231e-06 1.685806e-06 1.747671e-05 1.236755e-05 0.000819 -782.309851 298.0
1079884 59964000 4 300 0.084728 -784.550702 282.300960 70.256234 -18.244255 18.244255 -18.083463 ... 0.000847 0.000203 3.240295e-10 1.650953e-07 3.949750e-08 1.718175e-06 4.110572e-07 0.000209 -784.549214 298.0
1079896 59968000 4 300 0.082691 -788.556548 282.552509 71.226844 -18.885522 18.885522 -18.161840 ... 0.000720 0.000114 1.279101e-10 3.727197e-08 5.902926e-09 2.742668e-06 4.343684e-07 0.000127 -788.555413 298.0
1079908 59972000 4 300 0.082389 -789.188101 283.087933 72.070093 -18.440400 18.440400 -17.815400 ... 0.000486 0.000094 4.541652e-10 9.195329e-09 1.776545e-09 9.026502e-06 1.743928e-06 0.000035 -789.187226 298.0
1079920 59976000 4 300 0.078528 -785.896536 285.684297 75.138942 -19.213275 19.213275 -19.118364 ... 0.000654 0.000045 4.921952e-11 1.164535e-08 8.081852e-10 1.196819e-06 8.305906e-08 0.000020 -785.895713 298.0
1079932 59980000 4 300 0.084607 -816.896856 280.483774 73.000486 -18.091598 18.091598 -18.792829 ... 0.001214 0.000184 1.079085e-09 7.542237e-07 1.141581e-07 1.191381e-06 1.803256e-07 0.000126 -816.894928 298.0
1079944 59984000 4 300 0.083948 -786.872925 279.477735 72.838391 -16.684538 16.755364 -17.990023 ... 0.001040 0.000519 2.213178e-08 1.327157e-06 6.620261e-07 3.601473e-05 4.679331e-06 0.000281 -786.870768 298.0
1079956 59988000 4 300 0.083490 -774.179894 281.959274 71.866238 -16.082933 16.093614 -18.631667 ... 0.001917 0.000066 4.326969e-07 2.219099e-05 7.603376e-07 3.751513e-05 1.285394e-06 0.000066 -774.174284 298.0
1079968 59992000 4 300 0.079391 -792.986770 287.372172 72.656335 -16.464084 16.514087 -18.120479 ... 0.001942 0.000005 2.037472e-07 1.487034e-05 3.512841e-08 2.567672e-05 6.065649e-08 0.000004 -792.982741 298.0
1079980 59996000 4 300 0.083391 -804.420681 285.179770 73.634215 -16.788543 16.793807 -14.038913 ... 0.000633 0.000034 2.055954e-07 2.811579e-06 1.524211e-07 1.466193e-05 7.948517e-07 0.000011 -804.416565 298.0
1079992 60000000 4 300 0.083996 -807.143735 284.608428 70.036738 -16.652234 16.652234 -14.366466 ... 0.000090 0.000402 5.385865e-08 3.920323e-07 1.755203e-06 1.520548e-06 6.807778e-06 0.000050 -807.141094 298.0

180000 rows × 45 columns


In [121]:
test.query("Temp == 300").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[121]:
<matplotlib.axes._subplots.AxesSubplot at 0x1b0fa33668>

In [125]:
test.query("Temp == 373").plot.hexbin("DisReal", "z_h6", cmap="seismic", sharex=False)


Out[125]:
<matplotlib.axes._subplots.AxesSubplot at 0x1ab60ef518>

In [124]:
test.query("Temp == 335").plot.hexbin("DisReal", "z_h6", cmap="seismic", sharex=False)


Out[124]:
<matplotlib.axes._subplots.AxesSubplot at 0x1b3cb037b8>

In [123]:
test.query("Temp == 300").plot.hexbin("DisReal", "z_h6", cmap="seismic", sharex=False)


Out[123]:
<matplotlib.axes._subplots.AxesSubplot at 0x1ab1e95eb8>

In [2]:
data = pd.read_feather("/Users/weilu/Research/server/may_2018/second_long/rerun_1_10_May_231258.feather")
dic = {"T0":300, "T1":335, "T2":373, "T3":417, "T4":465, "T5":519, "T6":579, "T7":645, "T8":720, "T9":803, "T10":896, "T11":1000}
a = data
a["Temp"] = a["Temp"].apply(lambda x: dic[x])
rerun1 = data
t = a.query("Temp < 400").groupby(["BiasTo","Temp"])[["DisReal","Run"]].mean().reset_index()
t["Diff"] = t["DisReal"]-t["BiasTo"].apply(pd.to_numeric)
t["BiasTo"] = t["BiasTo"].apply(pd.to_numeric)
fg = sns.FacetGrid(data=t, hue='Temp', size=8, aspect=1.61)
fg.map(plt.scatter, 'BiasTo', 'Diff').add_legend()


Out[2]:
<seaborn.axisgrid.FacetGrid at 0x10f9037b8>

In [5]:
data = pd.read_feather("/Users/weilu/Research/server/may_2018/second_long/rerun_3_11_May_131422.feather")
dic = {"T0":300, "T1":335, "T2":373, "T3":417, "T4":465, "T5":519, "T6":579, "T7":645, "T8":720, "T9":803, "T10":896, "T11":1000}
a = data
a["Temp"] = a["Temp"].apply(lambda x: dic[x])
rerun3 = data
t = a.query("Temp < 400").groupby(["BiasTo","Temp"])[["DisReal","Run"]].mean().reset_index()
t["Diff"] = t["DisReal"]-t["BiasTo"].apply(pd.to_numeric)
t["BiasTo"] = t["BiasTo"].apply(pd.to_numeric)
fg = sns.FacetGrid(data=t, hue='Temp', size=8, aspect=1.61)
fg.map(plt.scatter, 'BiasTo', 'Diff').add_legend()


Out[5]:
<seaborn.axisgrid.FacetGrid at 0x1a237b1438>

In [22]:
data = pd.read_feather("/Users/weilu/Research/server/may_2018/second_long/rerun_5_14_May_155146.feather")
dic = {"T0":300, "T1":335, "T2":373, "T3":417, "T4":465, "T5":519, "T6":579, "T7":645, "T8":720, "T9":803, "T10":896, "T11":1000}
a = data
a["Temp"] = a["Temp"].apply(lambda x: dic[x])
rerun5 = data
t = a.query("Temp < 400").groupby(["BiasTo","Temp"])[["DisReal","Run"]].mean().reset_index()
t["Diff"] = t["DisReal"]-t["BiasTo"].apply(pd.to_numeric)
t["BiasTo"] = t["BiasTo"].apply(pd.to_numeric)
fg = sns.FacetGrid(data=t, hue='Temp', size=8, aspect=1.61)
fg.map(plt.scatter, 'BiasTo', 'Diff').add_legend()


Out[22]:
<seaborn.axisgrid.FacetGrid at 0x1a1abe2c18>

In [101]:
rerun5.query("Temp == 300").plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[101]:
<matplotlib.axes._subplots.AxesSubplot at 0x1ab1e95668>

In [92]:
rerun5.query("Temp == 335").plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[92]:
<matplotlib.axes._subplots.AxesSubplot at 0x1ab0cb4e10>

In [103]:
t = rerun5.query("Temp == 335 and z_h6 > -10")
select(t, i=1)


Out[103]:
count mean std min 25% 50% 75% max
BiasTo Run
100.0 1 10.0 96.885458 4.879713 90.998707 95.142151 96.553551 97.389566 108.812547
7 220.0 93.343060 4.739800 83.254983 90.032380 93.231669 96.695901 110.679255
106.0 0 39.0 98.172817 4.278855 90.962516 95.018943 97.803319 101.521930 106.386584
5 2.0 98.494350 1.195716 97.648851 98.071600 98.494350 98.917099 99.339849
112.0 1 8.0 103.264801 2.812743 101.006303 101.156454 102.626063 104.063978 109.204981
5 207.0 108.336813 5.852188 91.661251 104.819697 108.383373 112.536859 121.248889
118.0 2 14.0 112.101558 4.097340 103.994893 109.238260 111.926518 114.300290 120.108372
4 17.0 114.066643 5.311149 101.725127 109.956906 115.102625 118.250686 120.901855
6 4.0 119.792016 4.657009 114.791170 116.965519 119.375835 122.202331 125.625222
124.0 1 6.0 110.337273 3.781957 104.500659 108.567977 110.474367 112.826954 115.030580
2 74.0 120.006869 4.890324 108.416125 116.262509 119.922622 123.584996 129.132621
6 25.0 120.225322 4.475290 110.354370 118.054433 120.916719 123.161208 126.287589
130.0 0 34.0 122.121241 6.220569 108.476543 117.725798 122.354659 125.658375 138.370562
1 9.0 127.266334 4.810529 120.063987 124.590548 126.449900 129.716521 136.941943
11 136.0 126.212789 5.149580 110.983446 122.933531 126.289257 128.793704 141.797037
136.0 9 35.0 131.474616 5.085674 121.514165 127.861091 129.788992 135.720933 143.005868
154.0 0 29.0 149.089464 5.305607 140.068185 147.074937 148.422446 150.540634 166.678734
2 23.0 147.129888 5.608708 138.274852 143.696983 144.768924 150.374684 159.077456
184.0 1 7.0 178.819985 4.099389 172.566183 177.179782 178.325803 180.254931 185.978486
3 115.0 179.460131 6.805056 164.920036 174.058625 180.040590 183.906325 199.800374
196.0 4 25.0 188.130136 4.972396 175.176343 186.034510 187.572508 190.443235 200.832589
8 6.0 192.353764 4.296103 187.422970 189.229962 191.713687 195.553694 198.036488
202.0 11 6.0 195.904924 2.884139 193.189368 194.075049 194.832075 197.198441 200.766089
214.0 3 28.0 207.822519 5.177553 197.694876 203.375880 208.605606 210.769646 220.821792
232.0 4 14.0 221.197600 4.177039 211.919142 219.652045 222.246817 224.166456 225.992584
250.0 1 6.0 230.956321 5.510079 224.432472 227.258310 230.925502 232.806551 239.984970
2 5.0 233.799590 3.307059 227.994033 234.667706 234.852748 235.178047 236.305415

In [ ]:


In [93]:
rerun5.query("Temp == 335 and z_h6 > -10").plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[93]:
<matplotlib.axes._subplots.AxesSubplot at 0x1ab555a668>

In [76]:
rerun5.query("Temp == 335").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[76]:
<matplotlib.axes._subplots.AxesSubplot at 0x1ab5884d30>

In [77]:
rerun5.query("Temp == 335 and DisReal > 150").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[77]:
<matplotlib.axes._subplots.AxesSubplot at 0x1ab04a20b8>

In [91]:
t= rerun5.query("Temp == 335 and DisReal > 150 and DisReal < 250")
t.plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[91]:
<matplotlib.axes._subplots.AxesSubplot at 0x1ab5cec160>

In [90]:
select(t.query("DisReal < 250"))


Out[90]:
count mean std min 25% 50% 75% max
BiasTo Run
184.0 1 675.0 180.960705 5.295053 161.914437 177.362968 180.643438 184.531378 196.943173
3 539.0 180.970596 5.658185 164.920036 177.359894 180.818769 184.530342 199.800374
4 287.0 179.688440 5.912062 164.720196 175.905537 180.042013 183.293695 197.447058
7 190.0 181.842066 5.532978 168.358536 178.409541 181.582586 185.165509 196.562550
190.0 1 118.0 186.525320 6.288673 170.380468 182.631295 186.319299 190.368127 207.991507
2 528.0 186.288835 5.607378 171.124087 182.570764 186.196409 190.162435 203.859027
6 418.0 186.256786 5.808236 167.417293 181.991754 185.850619 190.382291 201.907759
11 258.0 184.418764 6.041094 166.729937 180.303509 184.480471 188.344209 201.271066
196.0 2 610.0 191.721433 5.834754 175.041425 188.056413 191.722739 195.679235 214.663023
4 228.0 191.879992 5.534577 177.101989 187.887420 191.927669 196.035435 206.435323
8 1155.0 192.380808 5.736677 172.266251 188.348601 192.280908 196.254882 210.640315
11 121.0 190.761961 5.716098 175.439685 187.135451 190.454082 194.948917 202.615221
202.0 1 400.0 197.251562 5.214967 183.122168 193.587111 197.847510 200.879327 211.768424
2 573.0 197.695676 5.575842 180.292669 193.628970 198.227423 201.345709 212.475230
3 157.0 198.596750 5.441615 184.599706 195.027190 198.315475 202.372141 214.332833
4 768.0 197.682626 5.735479 179.284464 193.866631 197.743849 201.443413 216.695542
11 205.0 197.185679 5.824024 183.478840 193.274175 196.222408 201.652219 211.985092
214.0 0 659.0 209.044501 5.346511 193.830640 205.232420 208.874183 212.649199 225.878105
2 354.0 209.736240 5.530664 195.366612 205.826505 209.765066 213.110490 225.482520
3 483.0 208.546272 5.585731 193.258738 204.953365 208.674715 212.730394 222.779615
8 941.0 208.503938 5.221715 188.908787 204.859395 208.579863 212.084648 228.239481
226.0 0 343.0 219.219714 5.204065 205.079873 215.559370 219.205766 223.269547 235.255467
2 157.0 220.070092 4.828975 206.288960 217.235947 220.078681 223.221677 235.489607
4 1231.0 219.364492 5.268179 202.561018 215.880422 219.658065 222.956303 235.864405
5 757.0 219.220054 5.637756 198.230519 215.559405 219.236560 223.095349 237.465858
232.0 0 728.0 224.660677 5.384755 207.090939 221.069764 224.705371 228.539725 243.810778
2 792.0 223.797143 5.245027 206.125146 220.147328 223.997976 227.064995 239.293013
4 641.0 223.973648 5.373713 206.655385 220.122555 223.813652 227.549789 238.818346
7 253.0 225.507833 5.358746 210.510305 222.290966 226.130379 228.999872 238.843689
238.0 0 191.0 229.482555 4.855743 213.926864 226.627215 229.533964 232.286860 243.954792
2 854.0 230.022308 5.380038 213.636839 226.511108 229.828835 233.700449 246.192752
3 666.0 229.602933 5.143255 214.970952 226.302962 229.572837 233.111854 246.376082
6 521.0 230.402025 5.357642 214.515816 226.879012 230.561530 234.137171 245.242713
7 267.0 229.485736 5.310540 214.484883 225.849729 229.758134 232.505418 247.073898
244.0 1 1160.0 235.130651 5.190774 216.510600 231.603109 235.068672 238.820289 249.479184
3 248.0 235.841607 5.226451 222.715110 232.737213 235.838458 239.380760 249.912740
4 684.0 235.110598 5.318933 218.682235 231.339113 234.891450 238.770276 248.886239
9 324.0 234.772890 5.225279 219.634917 231.073748 234.662193 238.400512 248.021994
250.0 1 229.0 239.565552 5.170284 223.906855 236.186818 239.852249 243.287354 249.807345
2 1316.0 239.233245 4.991075 224.243485 235.986198 239.380979 243.016024 249.967038
7 467.0 240.184284 4.859973 222.214564 237.099155 240.565662 243.558228 249.853765
11 410.0 239.165054 4.989338 225.075316 236.041312 239.169380 242.745160 249.911782
256.0 2 248.0 244.892373 3.796852 232.985758 242.696005 245.658241 248.119650 249.969961
3 334.0 243.564257 4.107768 228.989039 240.937088 244.296400 246.778482 249.987214
4 834.0 243.046906 4.268064 229.309456 240.109176 243.556446 246.272029 249.981344
7 358.0 243.220850 4.217079 230.750833 240.396798 243.754897 246.522981 249.982334
9 166.0 243.829927 3.945197 230.875795 241.210342 244.250099 247.313511 249.834532
262.0 2 377.0 245.379285 3.433644 231.489749 243.293902 246.010870 248.156974 249.982939
4 187.0 245.789268 3.101086 236.060624 244.398863 246.372496 248.264491 249.998576
5 340.0 246.059635 3.146630 234.413667 244.477950 246.704910 248.669115 249.993202
8 393.0 245.466916 3.427024 232.912398 243.848652 246.222032 248.191785 249.998244
268.0 4 145.0 247.437462 2.165688 238.648177 246.068148 247.899351 249.261793 249.998086
5 195.0 246.985971 2.247420 240.506725 245.558955 247.544330 248.830750 249.997923
6 120.0 247.029120 2.267233 240.579417 245.529483 247.524116 248.889004 249.989080

In [83]:
t = rerun5.query("Temp == 335 and DisReal > 110 and DisReal < 170")
t.plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[83]:
<matplotlib.axes._subplots.AxesSubplot at 0x1ab60fc860>

In [86]:
t.shape


Out[86]:
(24316, 45)

In [85]:
t.query("Lipid1 > -0.1").shape


Out[85]:
(790, 45)

In [84]:
t.plot.hexbin("DisReal", "Lipid1", cmap="seismic", sharex=False)


Out[84]:
<matplotlib.axes._subplots.AxesSubplot at 0x1ab2eb92e8>

In [72]:
t.shape


Out[72]:
(24316, 45)

In [75]:
t.query("z_h5 < 0 and z_h4 < 0").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[75]:
<matplotlib.axes._subplots.AxesSubplot at 0x1ab586d5c0>

In [66]:
t.query("z_h5 < 0 and z_h4 < 0").plot.hexbin("z_h4", "Qw", cmap="seismic", sharex=False)


Out[66]:
<matplotlib.axes._subplots.AxesSubplot at 0x1ab61d64e0>

In [59]:
t.plot.hexbin("z_h5", "Qw", cmap="seismic", sharex=False)


Out[59]:
<matplotlib.axes._subplots.AxesSubplot at 0x1ab5cb4a58>

In [64]:
t.plot.hexbin("z_h4", "Qw", cmap="seismic", sharex=False)


Out[64]:
<matplotlib.axes._subplots.AxesSubplot at 0x1ab5365e10>

In [61]:
select(t.query("z_h5 > 0"))


Out[61]:
count mean std min 25% 50% 75% max
BiasTo Run
112.0 9 188.0 114.017234 2.849838 110.020622 111.801604 113.784511 115.433779 124.098805
130.0 4 215.0 123.572990 5.260558 110.576225 120.688421 123.800533 126.579746 136.654077
136.0 0 128.0 128.763377 5.238112 115.450773 125.563118 129.144027 132.475220 140.650885

In [56]:
t = rerun5.query("Dis_h56 > 60").query("Temp == 335 and DisReal > 110 and DisReal < 170")
select(t)


Out[56]:
count mean std min 25% 50% 75% max
BiasTo Run
112.0 9 220.0 113.888760 2.744472 110.014821 111.754585 113.501486 115.352508 124.098805
118.0 2 149.0 118.929087 5.036779 110.318405 115.040301 118.396388 122.659559 131.129405
4 363.0 118.837418 4.595188 110.263413 115.515223 118.175681 121.947164 139.727324
6 346.0 118.515115 5.009344 110.021542 114.646891 118.141035 121.770936 135.535130
124.0 0 226.0 123.344632 5.102410 110.339425 120.071888 123.407139 126.692817 137.023511
2 139.0 123.610012 5.411238 110.747112 119.804334 123.453122 127.345963 137.716777
4 312.0 122.157125 5.330646 110.015163 118.217874 122.563526 125.676376 135.780513
6 493.0 123.376960 5.409960 110.687132 119.350656 123.142081 126.964742 141.042592
130.0 0 271.0 127.861909 5.760101 112.110964 124.012180 127.941855 131.788176 143.155298
4 249.0 123.594783 5.250152 110.576225 120.634680 123.859937 127.146182 136.654077
11 604.0 128.502929 5.432917 113.326503 124.692949 128.401144 132.246495 143.503038
136.0 0 152.0 128.708072 5.205293 115.450773 125.508009 128.777915 132.366597 140.650885
5 205.0 133.500936 5.624420 116.377924 128.951640 133.363093 138.346592 146.459772
9 1137.0 132.985569 5.638666 115.683772 129.470145 133.155802 136.658481 150.921657
142.0 1 462.0 139.556646 5.205257 125.534582 135.921523 139.255201 142.932159 159.528101
2 428.0 138.953470 5.163070 120.032734 135.344485 138.830267 142.479498 151.848282
7 375.0 139.234213 5.927344 122.182281 135.071625 139.476345 142.616267 159.256350
8 485.0 139.172887 5.471542 120.405640 135.405845 139.135048 143.051569 155.490731
148.0 0 659.0 145.668043 5.803274 123.781484 141.933870 145.472212 149.762275 162.147887
1 757.0 145.443881 5.277007 128.972932 141.897429 145.261542 149.245869 159.875379
10 461.0 145.016819 5.673998 126.553971 141.128202 145.093329 148.949375 161.346503
154.0 0 761.0 149.982482 5.319381 133.613723 146.729452 150.076153 153.608444 164.213781
2 687.0 149.529956 5.648374 132.976905 145.529713 149.568446 153.391045 166.480971
11 474.0 149.362720 5.050657 135.092463 146.027241 149.519170 152.995679 161.782408
166.0 1 827.0 159.480823 5.061427 142.105013 156.004545 159.711161 163.320812 169.867479
3 1062.0 159.666864 4.777238 137.484527 156.496710 159.785538 163.024142 169.968945
11 348.0 160.320921 4.696041 147.676723 156.760252 160.547298 163.703565 169.830421
172.0 3 584.0 163.486282 4.147845 150.070914 160.786850 163.958580 166.891519 169.997033
5 758.0 163.685943 4.076048 149.538969 161.029999 164.076675 166.729176 169.993074
11 552.0 163.330487 4.299640 144.273653 160.896827 163.960506 166.538387 169.855068
178.0 0 255.0 165.885824 3.076300 154.709420 164.248085 166.398331 168.372149 169.992070
2 558.0 165.542292 3.512422 150.534593 163.757211 166.310432 168.302466 169.999178
3 372.0 165.911467 3.034237 154.732767 164.308512 166.531365 168.317290 169.993327

In [48]:
t = rerun5.query("Temp == 335 and DisReal > 110 and DisReal < 170")
select(t)


Out[48]:
count mean std min 25% 50% 75% max
BiasTo Run
112.0 5 181.0 113.684407 3.033113 110.022421 111.331302 113.040684 115.354613 126.114807
9 659.0 113.517973 2.781547 110.007645 111.355377 112.816463 115.087683 124.098805
118.0 2 436.0 118.223400 4.962972 110.042309 114.080159 117.783822 121.931738 133.558308
4 827.0 117.802909 4.491732 110.051239 114.442723 117.357430 120.766455 139.727324
6 752.0 118.027689 4.668094 110.021542 114.408115 117.697576 121.257865 135.535130
7 113.0 117.527195 4.648448 110.369641 113.865483 116.817902 120.914601 131.704392
124.0 0 482.0 122.272487 5.478604 110.186362 118.127865 122.207443 126.328702 137.023511
2 376.0 121.893262 5.087470 110.292408 118.622033 121.686982 125.401616 137.716777
4 470.0 122.107126 5.202729 110.015163 118.234955 122.452658 125.624072 135.780513
6 1132.0 122.406078 5.331351 110.182086 118.639788 122.283010 126.059010 141.042592
130.0 0 561.0 127.051908 5.684412 110.133203 123.224012 127.084729 131.077958 143.155298
1 120.0 127.125932 5.235139 116.521278 123.096766 126.651130 131.226041 139.055150
4 457.0 122.841322 5.175745 110.576225 119.499330 123.036017 126.096873 136.654077
11 1356.0 127.351156 5.588740 110.263989 123.622168 127.254723 131.149103 143.503038
136.0 0 218.0 128.303203 4.931341 115.450773 125.167614 128.096510 131.571564 140.650885
3 319.0 132.660625 5.684556 116.110332 128.640883 132.700478 136.744893 147.759901
5 347.0 133.026238 5.689429 116.377924 128.845935 133.327957 137.385988 146.459772
9 1616.0 132.686233 5.585466 115.683772 129.104881 132.815021 136.362374 150.921657
142.0 1 676.0 138.860722 5.223732 124.410287 135.608335 138.901767 142.145539 159.528101
2 608.0 138.807977 5.281854 120.032734 135.076668 138.621238 142.420378 152.814645
7 514.0 139.005279 5.916764 121.972151 134.641696 139.217018 142.484405 159.256350
8 702.0 138.414627 5.620920 120.405640 134.879579 138.448769 142.401283 155.490731
148.0 0 840.0 145.222400 5.814266 123.781484 141.429703 145.146624 149.159159 162.147887
1 1073.0 144.651276 5.439659 128.259737 140.982207 144.621892 148.432034 159.875379
10 587.0 144.647215 5.733792 126.553971 140.731848 144.715358 148.766633 161.346503
154.0 0 1012.0 149.531614 5.331009 132.691092 146.187903 149.375638 153.116727 166.678734
2 878.0 149.103452 5.664568 132.057883 145.234924 149.113538 152.958514 166.480971
11 525.0 149.164370 5.083712 135.092463 145.741993 149.249519 152.864444 161.782408
166.0 1 901.0 159.303251 5.071271 142.105013 155.872764 159.522717 163.179668 169.867479
3 1154.0 159.465314 4.824944 137.484527 156.309086 159.586980 162.854481 169.968945
11 368.0 160.285651 4.728580 147.191456 156.760252 160.547298 163.703013 169.904726
172.0 3 660.0 163.436187 4.211852 147.633163 160.703114 163.942093 166.843849 169.997033
5 794.0 163.565898 4.123275 149.538969 160.918856 163.930093 166.688620 169.993074
11 581.0 163.290092 4.281256 144.273653 160.856651 163.823638 166.485530 169.855068
178.0 0 280.0 165.761754 3.169329 154.709420 164.058678 166.312110 168.356346 169.992070
2 584.0 165.464453 3.558843 150.534593 163.626564 166.236520 168.276467 169.999178
3 380.0 165.920288 3.026844 154.732767 164.340449 166.531365 168.317290 169.993327
6 106.0 166.100398 2.855009 155.241335 164.803261 166.437584 168.399064 169.902471

In [44]:
rerun5.query("Temp == 335 and DisReal > 150").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[44]:
<matplotlib.axes._subplots.AxesSubplot at 0x1ab623f1d0>

In [23]:
rerun5.query("Temp == 335 and DisReal < 120").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[23]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a20a25d30>

In [16]:
rerun3.query("Temp == 335 and DisReal < 120").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[16]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a1acb2f60>

In [17]:
rerun3.query("Temp == 300 and DisReal < 120").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[17]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a19455518>

In [18]:
rerun3.query("Temp == 300 and DisReal < 120").plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[18]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a1b85b0b8>

In [20]:
rerun1.query("Temp == 300 and DisReal < 120").plot.hexbin("z_h6", "Qw", cmap="seismic", sharex=False)


Out[20]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a1b0e6f60>

In [14]:
t = rerun3.query("Temp == 300 and DisReal < 200 and Qw > 0.25")
select(t)


Out[14]:
count mean std min 25% 50% 75% max
BiasTo Run
100.0 3 420.0 94.442142 4.909369 80.446466 90.985544 94.615634 97.623806 108.358270
7 2080.0 93.839833 4.756603 77.847773 90.632894 93.831517 97.041950 110.338102
106.0 4 1998.0 98.780802 4.763250 81.111498 95.821646 98.940109 101.841943 115.396955
112.0 1 2486.0 102.271368 4.459356 87.661806 99.367031 102.352885 105.315139 116.577365
124.0 1 1884.0 109.865204 4.233533 95.721171 106.990587 109.851261 112.538459 123.862923
136.0 0 332.0 127.654587 4.886030 116.035375 124.201343 127.690403 130.825819 139.957537

In [10]:
rerun1.query("Temp == 300 and DisReal < 200").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[10]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a1c054828>

In [11]:
rerun1.query("Temp == 335 and DisReal < 200").plot.hexbin("DisReal", "Qw", cmap="seismic", sharex=False)


Out[11]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a198e8198>

In [42]:
pre = "/Users/weilu/Research/server/may_2018/02_week"
temp = 310
location = pre + "/second_long/_280-350/2d_z_qw/force_0.1/"
location2 = location + f"pmf-{temp}.dat"
path, f = shortest_path(location2, start=(1, 10), end=(28,20),save=False, xlabel="z_H6", ylabel="Qw", zmax=20,res=30)
f_original =f
# plt.savefig("/Users/weilu/papers/figures/2d_z6_qw.png", dpi=300)
# plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
location3 = location + f"evpb-{temp}.dat"
(xi,yi,zi) = plot2d(location3, zmax=120)
plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
# plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)
plt.figure()
f_on_path = [zi[tuple(p)] for p in reversed(path)]
plt.plot(f_on_path)
# plt.savefig("/Users/weilu/papers/figures/shortest_path_expected_dis.png", dpi=300)


<matplotlib.colors.LinearSegmentedColormap object at 0x114d31ef0>
Out[42]:
[<matplotlib.lines.Line2D at 0x1ab682ff28>]

In [41]:
pre = "/Users/weilu/Research/server/may_2018/02_week"
temp = 310
location = pre + "/second_long/_280-350/2d_z_qw/energy_z_h6/"
location2 = location + f"pmf-{temp}.dat"
path, f = shortest_path(location2, start=(15, 1), end=(2,28),save=False, xlabel="z_H6", ylabel="Qw", zmax=20,res=30)
f_original =f
# plt.savefig("/Users/weilu/papers/figures/2d_z6_qw.png", dpi=300)
# plt.savefig("/Users/weilu/papers/figures/shortest_path.png", dpi=300)
location3 = location + f"evpb-{temp}.dat"
(xi,yi,zi) = plot2d(location3, zmax=120)
plt.plot(xi[path[:,1]], yi[path[:,0]], 'r.-')
# plt.savefig("/Users/weilu/papers/figures/2d_expected_dis.png", dpi=300)
plt.figure()
f_on_path = [zi[tuple(p)] for p in reversed(path)]
plt.plot(f_on_path)
# plt.savefig("/Users/weilu/papers/figures/shortest_path_expected_dis.png", dpi=300)


<matplotlib.colors.LinearSegmentedColormap object at 0x114d31ef0>
Out[41]:
[<matplotlib.lines.Line2D at 0x1ab6080be0>]

In [ ]: