In [1]:
import pandas as pd
import cv2
import numpy as np
import os.path
import matplotlib.pyplot as plt
In [11]:
ROOT = '/Users/shouzeluo/Desktop/Belle/data/imgs/'
file_list = np.asarray([f for f in os.listdir(ROOT) if f.endswith('png')])
In [3]:
img0=cv2.imread(os.path.join(ROOT, 'SJK08100DM1BH6.png'))
H1 = cv2.calcHist([img0], [0], None, [256], [0, 256])
H1=cv2.normalize(H1,H1,0,1,cv2.NORM_MINMAX,-1)
dist = []
for f in file_list:
img = cv2.imread(os.path.join(ROOT, f))
tmp = cv2.calcHist([img], [0], None, [256], [0, 256])
tmp = cv2.normalize(tmp,tmp,0,1,cv2.NORM_MINMAX,-1)
similarity = cv2.compareHist(H1,tmp,0)
dist.append(similarity)
dist = np.asarray(dist)
file_name = file_list[dist.argpartition(-2)[-2]]
file_name
Out[3]:
In [16]:
class CompareImage(object):
def __init__(self, image_1_path, image_2_path):
self.minimum_commutative_image_diff = 0.25
self.image_1_path = image_1_path
self.image_2_path = image_2_path
def compare_image(self):
image_1 = cv2.imread(self.image_1_path, 0)
image_2 = cv2.imread(self.image_2_path, 0)
img_hist_diff, img_template_diff, commutative_image_diff = self.get_image_difference(image_1, image_2)
# if img_hist_diff<0.3 and img_template_diff<0.3:
# if commutative_image_diff < self.minimum_commutative_image_diff:
# print("Matched")
# return commutative_image_diff
return commutative_image_diff # random failure value
@staticmethod
def get_image_difference(image_1, image_2):
first_image_hist = cv2.calcHist([image_1], [0], None, [256], [0, 256])
second_image_hist = cv2.calcHist([image_2], [0], None, [256], [0, 256])
img_hist_diff = 1-cv2.compareHist(first_image_hist, second_image_hist,0)
img_template_probability_match = cv2.matchTemplate(first_image_hist, second_image_hist, cv2.TM_CCOEFF_NORMED)[0][0]
img_template_diff = 1 - img_template_probability_match
# taking only 10% of histogram diff, since it's less accurate than template method
commutative_image_diff = (img_hist_diff / 10) + img_template_diff
return [img_hist_diff,img_template_diff,commutative_image_diff]
In [21]:
p1 = os.path.join(ROOT, 'SJK01500DQ1AM6.png')
dist = []
for f in file_list:
p2 = os.path.join(ROOT, f)
compare_image = CompareImage(p1, p2)
image_difference = compare_image.compare_image()
dist.append(image_difference)
In [22]:
dist = np.asarray(dist)
file_list[dist.argsort()]
Out[22]:
In [ ]:
In [ ]: