Face Generation

In this project, you'll use generative adversarial networks to generate new images of faces.

Get the Data

You'll be using two datasets in this project:

  • MNIST
  • CelebA

Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.

If you're using FloydHub, set data_dir to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".


In [6]:
data_dir = './data'

# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
#data_dir = '/input'


"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import helper

helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)


Found mnist Data
Found celeba Data

Explore the Data

MNIST

As you're aware, the MNIST dataset contains images of handwritten digits. You can view the first number of examples by changing show_n_images.


In [7]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot

mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')


Out[7]:
<matplotlib.image.AxesImage at 0x7fc756487390>

CelebA

The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images.


In [8]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))


Out[8]:
<matplotlib.image.AxesImage at 0x7fc756414898>

Preprocess the Data

Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.

The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).

Build the Neural Network

You'll build the components necessary to build a GANs by implementing the following functions below:

  • model_inputs
  • discriminator
  • generator
  • model_loss
  • model_opt
  • train

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU


In [9]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf

# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer.  You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))


TensorFlow Version: 1.0.1
Default GPU Device: /gpu:0

Input

Implement the model_inputs function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Real input images placeholder with rank 4 using image_width, image_height, and image_channels.
  • Z input placeholder with rank 2 using z_dim.
  • Learning rate placeholder with rank 0.

Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)


In [10]:
import problem_unittests as tests

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    :param image_width: The input image width
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    # TODO: Implement Function
    inputs_real = tf.placeholder(tf.float32, (None, image_width, image_height, image_channels), name='input_real')
    inputs_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')
    input_learning_rate = tf.placeholder(tf.float32, name='learning_rate')
    return inputs_real, inputs_z, input_learning_rate


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)


Tests Passed

Discriminator

Implement discriminator to create a discriminator neural network that discriminates on images. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the discriminator, tensor logits of the discriminator).


In [11]:
def discriminator(images, reuse=False, alpha=0.2):
    """
    Create the discriminator network
    :param images: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
    """
    # TODO: Implement Function
    with tf.variable_scope('discriminator', reuse=reuse):
        out = tf.layers.conv2d(images, 64, 5, strides=2, padding='same')
        out = tf.maximum(alpha * out, out)
        # 14 * 14 now
        
        out = tf.layers.conv2d(out, 128, 5, strides=2, padding='same')
        out = tf.layers.batch_normalization(out, training=True)
        out = tf.maximum(alpha * out, out)
        # 7 * 7 now
        
        out = tf.layers.conv2d(out, 256, 3, strides=2, padding='valid')
        out = tf.layers.batch_normalization(out, training=True)
        out = tf.maximum(alpha * out, out)
        # 3 * 3 now
        
        out = tf.reshape(out, (-1, 3 * 3 * 256))
        
        logits = tf.layers.dense(out, 1, activation=None)
        out = tf.sigmoid(logits)
        
        
    return out, logits


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)


Tests Passed

Generator

Implement generator to generate an image using z. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim images.


In [18]:
def generator(z, out_channel_dim, is_train=True, alpha=0.2):
    """
    Create the generator network
    :param z: Input z
    :param out_channel_dim: The number of channels in the output image
    :param is_train: Boolean if generator is being used for training
    :return: The tensor output of the generator
    """
    # TODO: Implement Function
    # If is_train is True, set reuse to False, if is_train is False, set reuse to True because
    # when we want to generate images, we would like to reuse the weights.
    reuse = not is_train
    
    with tf.variable_scope('generator', reuse=reuse):
        out = tf.layers.dense(z, 3 * 3 * 512)
        out = tf.reshape(out, (-1, 3, 3, 512))
        out = tf.layers.batch_normalization(out, training=is_train)
        out = tf.maximum(alpha * out, out)
        
        out = tf.layers.conv2d_transpose(out, 512, 3, strides=2, padding='valid')
        out = tf.layers.batch_normalization(out, training=is_train)
        out = tf.maximum(alpha * out, out)
        
        out = tf.layers.conv2d_transpose(out, 256, 5, strides=2, padding='same')
        out = tf.layers.batch_normalization(out, training=is_train)
        out = tf.maximum(alpha * out, out)
        
        out = tf.layers.conv2d_transpose(out, out_channel_dim, 5, strides=2, padding='same')
        out = tf.tanh(out)
    return out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)


Tests Passed

Loss

Implement model_loss to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:

  • discriminator(images, reuse=False)
  • generator(z, out_channel_dim, is_train=True)

In [13]:
def model_loss(input_real, input_z, out_channel_dim, alpha=0.2):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    # TODO: Implement Function
    g_model = generator(input_z, out_channel_dim, alpha=alpha)
    d_model_real, d_logits_real = discriminator(input_real, alpha=alpha)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True, alpha=alpha)
    
    d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
        logits=d_logits_real, labels=tf.ones_like(d_logits_real)))
    d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
        logits=d_logits_fake, labels=tf.zeros_like(d_logits_fake)))
    g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
        logits=d_logits_fake, labels=tf.ones_like(d_logits_fake)))

    d_loss = d_loss_real + d_loss_fake

    return d_loss, g_loss


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)


Tests Passed

Optimization

Implement model_opt to create the optimization operations for the GANs. Use tf.trainable_variables to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).


In [14]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    # TODO: Implement Function
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]
    
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        d_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
        g_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)
    return d_opt, g_opt


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)


Tests Passed

Neural Network Training

Show Output

Use this function to show the current output of the generator during training. It will help you determine how well the GANs is training.


In [15]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np

def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
    """
    Show example output for the generator
    :param sess: TensorFlow session
    :param n_images: Number of Images to display
    :param input_z: Input Z Tensor
    :param out_channel_dim: The number of channels in the output image
    :param image_mode: The mode to use for images ("RGB" or "L")
    """
    cmap = None if image_mode == 'RGB' else 'gray'
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    images_grid = helper.images_square_grid(samples, image_mode)
    pyplot.imshow(images_grid, cmap=cmap)
    pyplot.show()

Train

Implement train to build and train the GANs. Use the following functions you implemented:

  • model_inputs(image_width, image_height, image_channels, z_dim)
  • model_loss(input_real, input_z, out_channel_dim)
  • model_opt(d_loss, g_loss, learning_rate, beta1)

Use the show_generator_output to show generator output while you train. Running show_generator_output for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator output every 100 batches.


In [16]:
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
    """
    Train the GAN
    :param epoch_count: Number of epochs
    :param batch_size: Batch Size
    :param z_dim: Z dimension
    :param learning_rate: Learning Rate
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :param get_batches: Function to get batches
    :param data_shape: Shape of the data
    :param data_image_mode: The image mode to use for images ("RGB" or "L")
    """
    # TODO: Build Model
    # For the mnist, the data_image_mode is 'L', shape is (60000, 28, 28, 1)
    # For the celebA, the date_image_mode is 'RGB', shape is (202599, 28, 28, 3)
    _, image_width, image_height, image_channels = data_shape
    
    # Get model input and output
    input_real, input_z, input_learning_rate = model_inputs(image_width, image_height, image_channels, z_dim)
    d_loss, g_loss = model_loss(input_real, input_z, image_channels)
    d_opt, g_opt = model_opt(d_loss, g_loss, learning_rate, beta1)
    step = 0
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        
        # save graph
        graph_writer = tf.summary.FileWriter('log' + '/train',
                                            sess.graph)    
        for epoch_i in range(epoch_count):
            for batch_images in get_batches(batch_size):
                # TODO: Train Model
                step += 1
                
                # Sample z
                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))
                
                # Scale the images'
                batch_images = batch_images * 2
                
                # Run optimizers
                _ = sess.run(d_opt, feed_dict=
                             {input_real: batch_images, input_z: batch_z, input_learning_rate: learning_rate})
                _ = sess.run(g_opt, feed_dict=
                             {input_z: batch_z, input_real: batch_images, input_learning_rate: learning_rate})
                
                if step % 100 == 0:
                    # Print loss
                    train_loss_d = sess.run(d_loss, feed_dict={input_real: batch_images, input_z: batch_z})
                    train_loss_g = sess.run(g_loss, feed_dict={input_z: batch_z})
                    print ('train loss for discriminator is {}, for generator is {}'.
                           format(train_loss_d, train_loss_g))
                    
                    show_generator_output(sess, 16, input_z, image_channels, data_image_mode)

MNIST

Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.


In [19]:
batch_size = 128
z_dim = 100
learning_rate = 0.0002
beta1 = 0.5
tf.reset_default_graph()

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2

mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
          mnist_dataset.shape, mnist_dataset.image_mode)


train loss for discriminator is 0.47725194692611694, for generator is 1.7035958766937256
train loss for discriminator is 1.098995327949524, for generator is 0.8102118372917175
train loss for discriminator is 0.9627642631530762, for generator is 1.1898534297943115
train loss for discriminator is 0.8487159609794617, for generator is 1.2218663692474365
train loss for discriminator is 0.9031113386154175, for generator is 1.200768232345581
train loss for discriminator is 1.3355064392089844, for generator is 0.38679859042167664
train loss for discriminator is 1.0057806968688965, for generator is 0.7567535638809204
train loss for discriminator is 0.961998462677002, for generator is 0.8164024353027344
train loss for discriminator is 0.8070964813232422, for generator is 1.0849452018737793

CelebA

Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.


In [20]:
batch_size = 64
z_dim = 128
learning_rate = 0.0002
beta1 = 0.5


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 1

celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
          celeba_dataset.shape, celeba_dataset.image_mode)


train loss for discriminator is 0.3609473705291748, for generator is 1.9858770370483398
train loss for discriminator is 0.8068585395812988, for generator is 1.093186378479004
train loss for discriminator is 0.8685238361358643, for generator is 0.9342929124832153
train loss for discriminator is 0.8153954744338989, for generator is 1.4679683446884155
train loss for discriminator is 1.2336156368255615, for generator is 0.42895591259002686
train loss for discriminator is 1.2562460899353027, for generator is 0.5036340951919556
train loss for discriminator is 1.6219544410705566, for generator is 0.5973342657089233
train loss for discriminator is 1.185165524482727, for generator is 0.8728261590003967
train loss for discriminator is 1.1416856050491333, for generator is 0.9842681288719177
train loss for discriminator is 1.2119672298431396, for generator is 0.8065148591995239
train loss for discriminator is 1.3340827226638794, for generator is 0.6753900051116943
train loss for discriminator is 1.2846566438674927, for generator is 0.7261286377906799
train loss for discriminator is 1.0583808422088623, for generator is 1.4901937246322632
train loss for discriminator is 0.9316301345825195, for generator is 1.3384170532226562
train loss for discriminator is 1.1410703659057617, for generator is 1.092620849609375
train loss for discriminator is 0.8170651197433472, for generator is 0.9733198881149292
train loss for discriminator is 1.465632438659668, for generator is 0.42470020055770874
train loss for discriminator is 0.9755685925483704, for generator is 0.8418310880661011
train loss for discriminator is 1.3439769744873047, for generator is 0.5008747577667236
train loss for discriminator is 1.0891884565353394, for generator is 0.5721567869186401
train loss for discriminator is 0.7353451251983643, for generator is 1.648118495941162
train loss for discriminator is 0.9643704891204834, for generator is 1.3122016191482544
train loss for discriminator is 0.9438756108283997, for generator is 0.9789811372756958
train loss for discriminator is 1.4002320766448975, for generator is 0.5396281480789185
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
<ipython-input-20-b24b945f7fa9> in <module>()
     13 with tf.Graph().as_default():
     14     train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
---> 15           celeba_dataset.shape, celeba_dataset.image_mode)

<ipython-input-16-46bd0ff8b051> in train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode)
     41                 # Run optimizers
     42                 _ = sess.run(d_opt, feed_dict=
---> 43                              {input_real: batch_images, input_z: batch_z, input_learning_rate: learning_rate})
     44                 _ = sess.run(g_opt, feed_dict=
     45                              {input_z: batch_z, input_real: batch_images, input_learning_rate: learning_rate})

/home/luo/anaconda2/envs/dlnd/lib/python3.6/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
    765     try:
    766       result = self._run(None, fetches, feed_dict, options_ptr,
--> 767                          run_metadata_ptr)
    768       if run_metadata:
    769         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

/home/luo/anaconda2/envs/dlnd/lib/python3.6/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
    963     if final_fetches or final_targets:
    964       results = self._do_run(handle, final_targets, final_fetches,
--> 965                              feed_dict_string, options, run_metadata)
    966     else:
    967       results = []

/home/luo/anaconda2/envs/dlnd/lib/python3.6/site-packages/tensorflow/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
   1013     if handle is None:
   1014       return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1015                            target_list, options, run_metadata)
   1016     else:
   1017       return self._do_call(_prun_fn, self._session, handle, feed_dict,

/home/luo/anaconda2/envs/dlnd/lib/python3.6/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
   1020   def _do_call(self, fn, *args):
   1021     try:
-> 1022       return fn(*args)
   1023     except errors.OpError as e:
   1024       message = compat.as_text(e.message)

/home/luo/anaconda2/envs/dlnd/lib/python3.6/site-packages/tensorflow/python/client/session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
   1002         return tf_session.TF_Run(session, options,
   1003                                  feed_dict, fetch_list, target_list,
-> 1004                                  status, run_metadata)
   1005 
   1006     def _prun_fn(session, handle, feed_dict, fetch_list):

KeyboardInterrupt: 

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.