In [1]:
import sys
sys.path.append('../')
sys.path.append('../../')

from errorpro.interactive import *
init(locals())

In [2]:
load_file("data")

In [3]:
%%eq
Z_I = U_I / I_I [kOhm]

In [4]:
m, b, z = params('m b z')
fit(m*z+b, f_I**2, Z_I**2, [m,b], xvar=z)


Out[4]:
Results of fit

$m \; \mathrm{\left[\frac{kg m^{2}}{A^{2} F}\right]}$ $b \; \mathrm{\left[\frac{H}{F}\right]}$
$5.977 \pm 0.010$ $6950 \pm 110$


In [5]:
%%eq
Induktivität L und R   L = sqrt(m) [mH]
Widerstand L und R     R = sqrt(b)

In [6]:
table(L, R)


Out[6]:
Displaying: $L$, $R$

Induktivität L und R $L \; \mathrm{\left[mH\right]}$ Widerstand L und R $R \; \mathrm{\left[Ohm\right]}$
$2444.9 \pm 2.0$ $83.4 \pm 0.7$


In [9]:
%%eq
Z_S = U_S / I_S
omega_S = 2*pi*f_S

In [27]:
%eq R = 100
%eq L = 0.3
%eq C = 0.000001
fit( sqrt(R**2+(L*omega_S-1/C/omega_S)**2), omega_S, Z_S, [R,L,C])


Out[27]:
Results of fit

$R \; \mathrm{\left[Ohm\right]}$ $L \; \mathrm{\left[H\right]}$ $C \; \mathrm{\left[F\right]}$
$90.8 \pm 0.8$ $0.3884 \pm 0.0004$ $(1.7867 \pm 0.0018) \times 10^{-6}$



In [29]:
%eq w_R_1 = 1/sqrt(L*C)
w_R_1


Out[29]:
Displaying: $w_{R 1}$

$w_{R 1} \; \mathrm{\left[\frac{1}{s}\right]}$
$1200.4 \pm 0.9$


In [26]:
%eq A = 0.003
%eq B = 0.0001
fit(atan(A*omega_S-1/(B*omega_S)), omega_S, -phi_S, [A,B])


Out[26]:
Results of fit

$A \; \mathrm{\left[s\right]}$ $B \; \mathrm{\left[s\right]}$
$(4.11 \pm 0.12) \times 10^{-3}$ $(1.68 \pm 0.05) \times 10^{-4}$



In [25]:
%eq w_R = 1/sqrt(A*B)
w_R_2


Out[25]:
Displaying: $w_{R}$

$w_{R} \; \mathrm{\left[\frac{1}{s}\right]}$
$1204 \pm 23$