In [1]:
import sys
sys.path.append('../')
sys.path.append('../../')

from errorpro.interactive import *
init(locals())

In [2]:
load_file('data')

In [3]:
E = assign([E1.value, E2.value, E3.value, E4.value, E5.value, E6.value, E7.value, E8.value, E9.value, E10.value],
           error='0.05', name='E', unit='V')
m, b = params('m b')
E0_m = mean(E0)
E_real = assign(E-mean(E0))
fit(m*(U) + b, U, E_real, [m, b])


Out[3]:
Results of fit

$m \; \mathrm{\left[1\right]}$ $b \; \mathrm{\left[V\right]}$
$0.00081 \phantom{0} \pm 0.00005 \phantom{0}$ $1.0 \phantom{0} \pm 0.4 \phantom{0}$
$0.00066 \phantom{0} \pm 0.00005 \phantom{0}$ $0.83 \pm 0.26$
$0.00054 \phantom{0} \pm 0.00004 \phantom{0}$ $0.68 \pm 0.21$
$0.000457 \pm 0.000030$ $0.53 \pm 0.19$
$0.00036 \phantom{0} \pm 0.00004 \phantom{0}$ $0.50 \pm 0.22$
$0.000338 \pm 0.000019$ $0.28 \pm 0.12$
$0.000224 \pm 0.000012$ $0.17 \pm 0.08$
$0.000155 \pm 0.000008$ $0.07 \pm 0.05$
$0.000107 \pm 0.000008$ $0.02 \pm 0.05$
$0.000065 \pm 0.000009$ $0.01 \pm 0.06$

In [4]:
plot(U, slice(m,0,1)*U+slice(b,0,1),
     U, slice(m,1,2)*U+slice(b,1,2),
     U, slice(m,2,3)*U+slice(b,2,3),
     U, slice(m,3,4)*U+slice(b,3,4),
     U, slice(m,4,5)*U+slice(b,4,5),
     U, slice(m,5,6)*U+slice(b,5,6),
     U, slice(m,6,7)*U+slice(b,6,7),
     U, slice(m,7,8)*U+slice(b,7,8),
     U, slice(m,8,9)*U+slice(b,8,9),
     U, slice(m,9,10)*U+slice(b,9,10),
     U, assign(np.rollaxis(E_real.value,1)[0], unit='V'),
     U, assign(np.rollaxis(E_real.value,1)[1], unit='V'),
     U, assign(np.rollaxis(E_real.value,1)[2], unit='V'),
     U, assign(np.rollaxis(E_real.value,1)[3], unit='V'),
     U, assign(np.rollaxis(E_real.value,1)[4], unit='V'),
     U, assign(np.rollaxis(E_real.value,1)[5], unit='V'),
     U, assign(np.rollaxis(E_real.value,1)[6], unit='V'),
     U, assign(np.rollaxis(E_real.value,1)[7], unit='V'),
     U, assign(np.rollaxis(E_real.value,1)[8], unit='V'),
     U, assign(np.rollaxis(E_real.value,1)[9], unit='V'),
    legend=False, size=[8,5])



In [8]:
p, q = params('p q')
z = fit(p/s**q, s, m, [p,q], ignore_dim=True)
plot(s, m, {'marker':'x'},
     s, p/s**q, {'color':'blue'},
     xscale='log', yscale='log', xrange=[0.15,0.55], yrange=[4e-5,1e-3], size=[7,5], ignore_dim=True)



In [ ]: