In [4]:
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
import glob
from shutil import copyfile
from dogcat_data import generators
from keras.applications.inception_v3 import preprocess_input
from keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
import numpy as np
In [2]:
if not os.path.exists("augment/dog"):
os.makedirs("augment/dog")
d = glob.glob("./dogcat-data/train/dog/*")[0]
copyfile(d, "augment/dog/"+ d.split("/")[-1])
Out[2]:
In [5]:
train_datagen = ImageDataGenerator(
rotation_range=30,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True
)
train_iter = train_datagen.flow_from_directory(
"augment",
target_size=(100, 100),
batch_size=9,
class_mode="categorical"
)
plt.rcParams['figure.figsize'] = (10,10)
for i in range(9):
images, labels = next(train_iter)
plt.subplot(3,3,i+1)
plt.imshow((images[0] - np.min(images[0])) / np.ptp(images[0]), interpolation='none')
plt.title("label {}".format(labels[0]))
In [ ]: