In [1]:
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
from keras.models import load_model
from keras.datasets import mnist
import matplotlib.pyplot as plt
import numpy as np
(X_train, _), (X_test, y_test) = mnist.load_data()
In [2]:
encoder = load_model('auto-encoder.h5')
decoder = load_model('auto-decoder.h5')
In [3]:
index = 10
original = X_test[index].astype("float32") / 255.
encoding = encoder.predict(np.array([original]))[0]
#encoding[0] = 0
#encoding[1] = -100
print(encoding, y_test[index])
plt.subplot(1,2,1)
plt.title("predicted")
plt.imshow(decoder.predict(np.array([encoding]))[0], cmap='gray')
plt.subplot(1,2,2)
plt.title("original")
plt.imshow(original, cmap='gray')
Out[3]:
In [ ]: