In [13]:
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
from tensorflow.keras.applications.densenet import DenseNet121, preprocess_input
from dogcat_data import generators
from tensorflow.keras.models import load_model
import numpy as np
import matplotlib.pyplot as plt
In [14]:
train_generator, validation_generator = generators(preprocess_input, 224, 224, 9)
images, labels = next(validation_generator)
#print(images[0])
plt.rcParams['figure.figsize'] = (10,10)
for i in range(9):
plt.subplot(3,3,i+1)
plt.imshow((images[i] - np.min(images[i])) / np.ptp(images[i]), interpolation='none')
plt.title("label {}".format(labels[i]))
plt.axis('off')
In [ ]:
model = load_model('transfered.h5')