In [1]:
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
import glob
from shutil import copyfile
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.datasets import cifar10
import matplotlib.pyplot as plt
import numpy as np
In [2]:
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
In [4]:
train_datagen = ImageDataGenerator(
rotation_range=30,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode="nearest"
)
train_iter = train_datagen.flow(
X_train, y_train,
batch_size=9)
plt.rcParams['figure.figsize'] = (10,10)
for i in range(9):
images, labels = next(train_iter)
plt.subplot(3,3,i+1)
plt.imshow((images[0] - np.min(images[0])) / np.ptp(images[0]), interpolation='none')
plt.title("label {}".format(labels[0]))
In [ ]: