In [1]:
import plotly.plotly as py
import plotly.graph_objs as go
In [2]:
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
In [3]:
init_notebook_mode(connected=True)
In [4]:
data = dict(type = 'choropleth',
locations = ['AZ', 'CA', 'NY'],
locationmode = 'USA-states',
colorscale = 'Greens',
text = ['Arizona', 'Cali', 'New York'],
z = [1.0, 2.0, 3.0],
colorbar = {'title': 'Colorbar Title Goes Here'})
In [5]:
data
Out[5]:
In [6]:
layout = dict(geo={'scope':'usa'})
In [7]:
choromap = go.Figure(data = [data], layout=layout)
In [8]:
iplot(choromap)
In [9]:
import pandas as pd
df = pd.read_csv('2011_US_AGRI_Exports')
In [10]:
df.head()
Out[10]:
In [11]:
data = dict(type = 'choropleth',
colorscale = 'YIOrRd',
locations = df['code'],
locationmode = 'USA-states',
z = df['total exports'],
text = df['text'],
marker = dict(line = dict(color = 'rgb(255, 255, 255)', width = 2)),
colorbar = {'title': 'Millions USD'})
In [12]:
layout = dict(title = '2011 US Agriculture Exports by State', geo = dict(scope='usa', showlakes=True, lakecolor='rgb(85, 173, 240)'))
In [13]:
layout
Out[13]:
In [14]:
choromap2 = go.Figure(data = [data], layout = layout)
#iplot(choromap2)
In [15]:
df = pd.read_csv('2014_World_GDP')
In [16]:
data = dict(type='choropleth',
locations= df['CODE'],
z = df['GDP (BILLIONS)'],
text = df['COUNTRY'],
colorbar = {'title': 'GDP in Billions USD'})
In [17]:
layout = dict(title = '2014 Global GDP', geo = dict(showframe=False, projection = {'type':'Mercator'}))
In [18]:
choromap3 = go.Figure(data = [data], layout = layout)
In [19]:
iplot(choromap3)