In [1]:
import pandas as pd
In [2]:
pd.__version__
Out[2]:
In [3]:
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
In [4]:
tf.logging.set_verbosity(tf.logging.ERROR)
%matplotlib inline
import warnings; warnings.simplefilter('ignore')
In [5]:
my_feature = pd.Series([1, 3, 5, 7, 9])
my_targets = pd.Series([12, 13, 14, 15, 16])
In [6]:
feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input(my_feature)
In [7]:
linear_regressor = tf.contrib.learn.LinearRegressor(
feature_columns=feature_columns,
optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.00001),
enable_centered_bias=True,
gradient_clip_norm=5.0
)
In [8]:
print "Training model..."
linear_regressor.fit(
my_feature,
my_targets,
steps=1000,
batch_size=15
)
print "Model training finished."
In [9]:
predictions = list(linear_regressor.predict(my_feature, as_iterable=True))
print predictions
In [10]:
plt.ylabel('targets')
plt.scatter(my_feature, my_targets, c='blue')
plt.scatter(my_feature, predictions, c='red')
plt.show()
In [ ]: