In [103]:
%load_ext autoreload
%autoreload 2
from sklearn.datasets import fetch_mldata
from simple_ml.nn import nn
from sklearn.preprocessing import StandardScaler
mnist = fetch_mldata('MNIST original')
data = mnist.data
label = mnist.target
X_train, X_test, y_train, y_test = train_test_split(data, label, test_size=1.0/7, random_state=42)
scalar = StandardScaler()
X_train = scalar.fit_transform(X_train)
X_test = scalar.transform(X_test)
In [ ]:
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(X_train, y_train)
y_pred = lr.predict(X_test)
accuracy_score(y_test, y_pred)
In [2]:
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(n_estimators=100)
rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
accuracy_score(y_test, y_pred)
Out[2]:
In [56]:
X_train.shape, X_test.shape, y_train.shape, y_test.shape
accuracy_score(y_test, y_pred)
Out[56]:
In [60]:
from simple_ml.nn import nn
from sklearn.preprocessing import StandardScaler
In [70]:
In [57]:
In [136]:
est = nn.NeurualNetworkClassifier(hidden_layer_size=100,
learning_rate=1e-1,
weight_std = 1e-2,
alpha=0.0,
sgd_epoch=10,
sgd_batch_size=64,
print_every = 1)
est.X_test = X_test
est.y_test = y_test
est.fit(X_train, y_train)
In [139]:
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
y_pred = est.predict(X_test)
accuracy_score(y_test, y_pred)
Out[139]:
In [36]:
t == t1
Out[36]:
In [35]:
t1
Out[35]:
In [20]:
y_pred = rf.predict(X_test)
In [21]:
accuracy_score(y_test, y_pred)
Out[21]:
In [36]:
t = X_train[0]
t = t.reshape(28, -1)
In [48]:
idx = 3230
plt.imshow(X_test[idx].reshape(28, -1))
print y_pred[idx], y_test[idx]
plt.show()
In [40]:
%matplotlib inline
In [ ]: