In [5]:
import sympy as sym
sym.init_printing()
z = sym.Symbol("\zeta")
z
Out[5]:
In [72]:
H_q = sym.Matrix([[1 -z, z]])
H_q
Out[72]:
In [73]:
HTH = H_q.T @ H_q
Out[73]:
In [88]:
(HTH.subs({z:0.5- (1/3)**(0.5) / 2}) + HTH.subs({z: 0.5+ (1/3)**(0.5) / 2})) / 2
Out[88]:
In [86]:
HTH.integrate((z, 0, 1))
Out[86]:
In [35]:
import numpy as np
a = np.array([0,1,2], dtype=int)
temp = np.array([a*2, a*2 +1], dtype=int).T.flatten()
np.array([temp] * len(temp)).T
Out[35]:
In [37]:
from scipy import sparse
In [47]:
rows = [0, 0, 1, 1]
cols = [0, 0, 1, 1]
values = [1, 1, 1, 1]
s_array = sparse.csr.csr_matrix((values, (rows, cols)))
s_array
Out[47]:
In [48]:
s_array.toarray()
Out[48]:
In [55]:
s1 = s_array sparse.csr.csr_matrix([[0], [1]])
In [56]:
s1.toarray()
Out[56]:
In [58]:
In [59]:
a = set()
In [67]:
{*[1,2,3,1]}
Out[67]:
In [61]:
a
Out[61]:
In [78]:
sparse.dia_matrix(([1]*10, 0), shape=(10, 10)).toarray()
Out[78]:
In [80]:
sparse.csr_matrix(([1, 2], ([0, 1], [0, 0])), shape=(2, 1)).toarray()
Out[80]:
In [81]:
[] + [1,2,3]
Out[81]:
In [89]:
88/5
Out[89]:
In [90]:
17.6*4-22*3
Out[90]:
In [ ]: