In [5]:
import sympy as sym
sym.init_printing()
z = sym.Symbol("\zeta")
z


Out[5]:
$$\zeta$$

In [72]:
H_q = sym.Matrix([[1 -z, z]])
H_q


Out[72]:
$$\left[\begin{matrix}- \zeta + 1 & \zeta\end{matrix}\right]$$

In [73]:
HTH = H_q.T @ H_q


Out[73]:
$$\left[\begin{matrix}\left(- \zeta + 1\right)^{2} & \zeta \left(- \zeta + 1\right)\\\zeta \left(- \zeta + 1\right) & \zeta^{2}\end{matrix}\right]$$

In [88]:
(HTH.subs({z:0.5- (1/3)**(0.5) / 2}) + HTH.subs({z: 0.5+ (1/3)**(0.5) / 2})) / 2


Out[88]:
$$\left[\begin{matrix}0.333333333333333 & 0.166666666666667\\0.166666666666667 & 0.333333333333333\end{matrix}\right]$$

In [86]:
HTH.integrate((z, 0, 1))


Out[86]:
$$\left[\begin{matrix}\frac{1}{3} & \frac{1}{6}\\\frac{1}{6} & \frac{1}{3}\end{matrix}\right]$$

In [35]:
import numpy as np
a = np.array([0,1,2], dtype=int)
temp = np.array([a*2, a*2 +1], dtype=int).T.flatten()
np.array([temp] * len(temp)).T


Out[35]:
array([[0, 0, 0, 0, 0, 0],
       [1, 1, 1, 1, 1, 1],
       [2, 2, 2, 2, 2, 2],
       [3, 3, 3, 3, 3, 3],
       [4, 4, 4, 4, 4, 4],
       [5, 5, 5, 5, 5, 5]])

In [37]:
from scipy import sparse

In [47]:
rows = [0, 0, 1, 1]
cols = [0, 0, 1, 1]
values = [1, 1, 1, 1]
s_array = sparse.csr.csr_matrix((values, (rows, cols)))
s_array


Out[47]:
<2x2 sparse matrix of type '<class 'numpy.int64'>'
	with 2 stored elements in Compressed Sparse Row format>

In [48]:
s_array.toarray()


Out[48]:
array([[2, 0],
       [0, 2]], dtype=int64)

In [55]:
s1 = s_array sparse.csr.csr_matrix([[0], [1]])

In [56]:
s1.toarray()


Out[56]:
array([[0],
       [2]], dtype=int64)

In [58]:



/home/lo/.local/lib/python3.6/site-packages/scipy/sparse/compressed.py:746: SparseEfficiencyWarning: Changing the sparsity structure of a csr_matrix is expensive. lil_matrix is more efficient.
  SparseEfficiencyWarning)

In [59]:
a = set()

In [67]:
{*[1,2,3,1]}


Out[67]:
$$\left\{1, 2, 3\right\}$$

In [61]:
a


Out[61]:
$$\left\{0\right\}$$

In [78]:
sparse.dia_matrix(([1]*10, 0), shape=(10, 10)).toarray()


Out[78]:
array([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

In [80]:
sparse.csr_matrix(([1, 2], ([0, 1], [0, 0])), shape=(2, 1)).toarray()


Out[80]:
array([[1],
       [2]], dtype=int64)

In [81]:
[] + [1,2,3]


Out[81]:
$$\left [ 1, \quad 2, \quad 3\right ]$$

In [89]:
88/5


Out[89]:
$$17.6$$

In [90]:
17.6*4-22*3


Out[90]:
$$4.400000000000006$$

In [ ]: