Markov Assumption $$ P(X^{0:T}) = P(X^{(0)}) \prod_{t=0}^{T-1} P(X^{(t+1)}|X^{(0:t)}) $$ If $(X^{(t+1)} \bot X^{(0:t-1)}|X^{(t)})$ $$ P(X^{0:T}) = P(X^{(0)}) \prod_{t=0}^{T-1} P(X^{(t+1)}|X^{(t)}) $$
Semi-Markov Model
Useful in recognition
Summary
If $P \models (X \perp_c Y|Z,c) $, we have: $$ P(X,Y|Z,c) = P(X|Z,c)P(Y|Z,c) $$ $$ P(X|Y,Z,c) = P(X|Z,c) $$ $$ P(Y|X,Z,c) = P(Y|Z,c) $$
When independence happens? X is determined or X and Y are seriously independent (They have no correlation any more).
Summary
In [ ]: