ID3

Information Entropy

$$ Entropy(S) = - \sum_{i=1}^{m} P(u_i) log(P(u_i)) $$

where $P(u_i)=\frac{\|u_i\|}{\|S\|}$.

Gain of information entropy

$$ Gain(S,A) = Entropy(S) - \sum_{v \in Value(A)} \frac {\|S_v\|}{\|S\|} Entropy(S_v)$$

Algorithms

  • Compute Gain of Information Entropy (GIE)
  • Choose Best Feature with biggest GIE
  • Split data into kinds of sets based on the best feature
  • Repeat the above operations until all instances in sub-tree are same kind

In [1]:
from math import log
def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = dict()
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob*log(prob,2)
    return shannonEnt

def splitDataSet(dataSet,axis,value):
    retDataSet = list()
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0
    bestFeature = -1
    for i in range(numFeatures):
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList)
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet,i,value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob*calcShannonEnt(subDataSet)
        infoGain = baseEntropy - newEntropy
        if (infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature

def majorityCnt(classList):
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys(): classCount[vote] = 0
        classCount[vote] += 1
    storedClassCount = sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0]

def createTree(dataSet,labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    if (len(dataSet[0]) == 1):
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet,bestFeat,value),subLabels)
    return myTree

def classify(inputTree,featLabels,testVec):
    firstStr = inputTree.keys()[0]
    secondDict = inputTree[firstStr]
    featIndex = featLabels.index(firstStr)
    for key in secondDict.keys():
        if testVec[featIndex] == key:
            if type(secondDict[key]).__name__ == 'dict':
                classLabel = classify(secondDict[key],featLabels,testVec)
            else:
                classLabel = secondDict[key]
    return classLabel

In [2]:
def createDataSet():
    dataSet = [[1,1,'yes'],
              [1,1,'yes'],
              [1,0,'no'],
              [0,1,'no'],
              [0,1,'no']]
    labels = ['no surfacing','flippers']
    return dataSet,labels

In [8]:
myDat,labels = createDataSet()
myTree = createTree(myDat,labels)
print myTree


{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

In [9]:
myDat,labels = createDataSet()
classify(myTree,labels,[1,0])


Out[9]:
'no'

Pandas Version


In [27]:
import pandas as pd
import numpy as np
def CalcShannonEnt(dataSet):
    pass

Reference

[1]Harrington P. Machine Learning in Action[M] Machine learning in action. Manning Publications Co. 2012.