OLS Regression Results
==============================================================================
Dep. Variable: Y R-squared: 0.522
Model: OLS Adj. R-squared: 0.517
Method: Least Squares F-statistic: 107.0
Date: Sun, 09 Aug 2015 Prob (F-statistic): 2.20e-17
Time: 09:40:10 Log-Likelihood: -65.124
No. Observations: 100 AIC: 134.2
Df Residuals: 98 BIC: 139.5
Df Model: 1
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept -0.9265 0.047 -19.717 0.000 -1.020 -0.833
X 0.5477 0.053 10.342 0.000 0.443 0.653
==============================================================================
Omnibus: 0.898 Durbin-Watson: 2.157
Prob(Omnibus): 0.638 Jarque-Bera (JB): 0.561
Skew: -0.172 Prob(JB): 0.755
Kurtosis: 3.127 Cond. No. 1.15
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.