OLS Regression Results
==============================================================================
Dep. Variable: Sales R-squared: 0.239
Model: OLS Adj. R-squared: 0.234
Method: Least Squares F-statistic: 41.52
Date: Sun, 09 Aug 2015 Prob (F-statistic): 2.39e-23
Time: 12:56:45 Log-Likelihood: -927.66
No. Observations: 400 AIC: 1863.
Df Residuals: 396 BIC: 1879.
Df Model: 3
Covariance Type: nonrobust
================================================================================
coef std err t P>|t| [95.0% Conf. Int.]
--------------------------------------------------------------------------------
Intercept 13.0435 0.651 20.036 0.000 11.764 14.323
Urban[T.Yes] -0.0219 0.272 -0.081 0.936 -0.556 0.512
US[T.Yes] 1.2006 0.259 4.635 0.000 0.691 1.710
Price -0.0545 0.005 -10.389 0.000 -0.065 -0.044
==============================================================================
Omnibus: 0.676 Durbin-Watson: 1.912
Prob(Omnibus): 0.713 Jarque-Bera (JB): 0.758
Skew: 0.093 Prob(JB): 0.684
Kurtosis: 2.897 Cond. No. 628.
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.