In [1]:
#%load /home/lmentel/Devel/zeocalc/batchcalc/calculator.py

In [77]:
'''
The MIT License (MIT)

Copyright (c) 2014 Lukasz Mentel

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''

__version__ = "0.2.0"

_minwidth = 15

import operator
import os
import pkg_resources
import re
import math

from numpy.linalg import inv
import numpy as np

from sqlalchemy import Column, Boolean, Integer, String, Float, create_engine, ForeignKey
from sqlalchemy.orm import sessionmaker
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class Category(Base):
    __tablename__ = 'categories'

    id        = Column(Integer, primary_key=True)
    name      = Column(String)
    full_name = Column(String)

    def __repr__(self):
        return "<Category(id={i}, name={n}, full_name={f})>".format(i=self.id, n=self.name, f=self.full_name)

class Types(Base):
    __tablename__ = 'types'

    id   = Column(Integer, primary_key=True)
    name = Column(String)

    def __repr__(self):
        return "<Types(id={i}, name={n})>".format(i=self.id, n=self.name)

class Reaction(Base):
    __tablename__ = 'reactions'

    id       = Column(Integer, primary_key=True)
    reaction = Column(String)

    def __repr__(self):
        return "<Reaction(id={i}, reaction={n})>".format(i=self.id, n=self.reaction)

class Batch(Base):
    __tablename__ = 'batch'

    id           = Column(Integer, primary_key=True)
    reactant_id  = Column(Integer, ForeignKey('chemicals.id'), nullable=False)
    component_id = Column(Integer, ForeignKey('components.id'), nullable=False)
    reaction_id  = Column(Integer, ForeignKey('reactions.id'), nullable=True)
    coefficient  = Column(Float, nullable=True)

    def __repr__(self):
        return "<Batch(id={i:>2d}, reactant_id='{n:>5d}', component_id='{z:>5d}', coefficient={c:8.2f})>".format(
                i=self.id, n=self.reactant_id, z=self.component_id, c=self.coefficient)

class DBComponent(Base):
    '''
    Class representing the Component object.
        Zeolite component
        Template
        Zeolite Growth Modifier
    '''
    __tablename__ = 'components'

    id         = Column(Integer, primary_key=True)
    name       = Column(String)
    formula    = Column(String)
    molwt      = Column(Float)
    category   = Column(Integer, ForeignKey('categories.id'))
    short_name = Column(String)

    def __repr__(self):
        return "<DBComponent(id={i:>2d}, name='{n:s}', formula='{f:s}')>".format(
                i=self.id, n=self.name, f=self.formula)

class Chemical(Base):
    '''
    Class representing the Chemical object.
    '''
    __tablename__ = 'chemicals'

    id            = Column(Integer, primary_key=True)
    name          = Column(String)
    formula       = Column(String)
    molwt         = Column(Float)
    short_name    = Column(String)
    typ           = Column(Integer, ForeignKey('types.id'))
    concentration = Column(Float)
    cas           = Column(String)

    def __repr__(self):
        return "<Chemical(id={i:>2d}, name='{n:s}', formula='{f:s}')>".format(
                i=self.id, n=self.name, f=self.formula)

class Reactant(object):

    def __init__(self, id=None, name=None, formula=None, molwt=None,
                 short_name=None, typ=None, concentration=None, cas=None,
                 mass=0.0):

        self.id = id
        self.name = name
        self.formula = formula
        self.molwt = float(molwt)
        self.short_name = short_name
        self.typ = typ
        self.concentration = float(concentration)
        self.cas = cas
        self.mass = float(mass)

    def formula_to_tex(self):
        return re.sub(ur'(\d+)', ur'$_{\1}$', self.formula)

    def listctrl_label(self):
        if self.short_name != "":
            res = self.short_name
        else:
            res = self.formula
        return res

    def label(self):
        if self.short_name != "":
            res = self.short_name + u" ({0:>4.1f}\%)".format(100*self.concentration)
        else:
            res = self.formula_to_tex() + u" ({0:>4.1f}\%)".format(100*self.concentration)
        return res

    def __repr__(self):
        return "<Reactant(id={i:>2d}, name='{n:s}', formula='{f:s}')>".format(
                i=self.id, n=self.name, f=self.formula)

class Component(object):

    def __init__(self, id=None, name=None, formula=None, molwt=None,
                 typ=None, short_name=None, moles=None, category=None):

        self.id = id
        self.name = name
        self.formula = formula
        self.molwt = float(molwt)
        self.short_name = short_name
        self.moles = float(moles)
        self.category = category

    @property
    def mass(self):
        return self.moles*self.molwt

    def formula_to_tex(self):
        return re.sub(ur'(\d+)', ur'$_{\1}$', self.formula)

    def listctrl_label(self):
        if self.short_name != "":
            res = self.short_name
        else:
            res = self.formula
        return res

    def label(self):
        if self.short_name != "":
            res = self.short_name
        else:
            res = self.formula_to_tex()
        return res

    def __repr__(self):
        return "<Component(id={i:>2d}, name='{n:>15s}', formula='{f:>15s}', moles={m:8.2f})>".format(
                i=self.id, n=self.name, f=self.formula, m=self.moles)

class BatchCalculator(object):

    def __init__(self):

        # default database path
        dbpath = "/home/lmentel/Devel/zeocalc/batchcalc/data/zeolite.db"

        self.new_dbsession(dbpath)

        self.categories = ["reactant", "template", "zeolite", "zgm"]
        self.lists = ["components", "reactants"]

        # create lists for different categories of
        for lst in self.lists:
            setattr(self, lst, list())

        self.A = list()
        self.B = list()
        self.X = list()

        self.scale_all = 100.0
        self.sample_scale = 1.0
        self.sample_size = 5.0
        self.selections = []

    def new_dbsession(self, dbpath):

        if hasattr(self, "session"):
            self.session.close()
        engine = create_engine("sqlite:///{path:s}".format(path=dbpath))
        DBSession  = sessionmaker(bind=engine)
        self.session = DBSession()

    def reset(self):
        '''
        Clear the state of the calculation by reseting all the list and
        variables.
        '''

        self.components = []
        self.reactants = []

        self.A = []
        self.B = []
        self.X = []

        self.scale_all = 100.0
        self.sample_scale = 1.0
        self.sample_size = 5.0
        self.selections = []

    def get_component(self, category=None):

        if category not in self.categories:
            raise ValueError("wrong category in get_component: {}".format(category))

        return self.session.query(DBComponent).\
                filter(DBComponent.category == Category.id).\
                filter(Category.name == category).all()

    def get_chemicals(self, showall=False):
        if showall:
            return self.session.query(Chemical,Types).filter(Chemical.typ == Types.id).all()
        else:
            res = set()
            for item in self.components:
                temp = self.session.query(Chemical, Types).join(Batch).\
                           filter(Chemical.typ == Types.id).\
                           filter(Batch.component_id == item.id).all()
                res.update(temp)
            out = list(res)
            return sorted(out, key=lambda x: x[0].id)

    def select_item(self, lst, attr, value):
        '''
        From a list of objects "lst" having a common attribute get the index of the
        object having the attribute "attr" set to "value".
        '''

        if lst not in self.lists:
            raise ValueError("wrong table in select_item")

        ag = operator.attrgetter(attr)
        for item in getattr(self, lst):
            if ag(item) == value:
                return item
        else:
            return None

    def update_components(self, category, selections):

        if any(len(x) != 2 for x in selections):
            raise ValueError("selections should be tuples of length 2")

        for sitem in selections:
            comp, cat = self.session.query(DBComponent, Category).\
                    filter(DBComponent.category == Category.id).\
                    filter(DBComponent.id == sitem[0]).one()

            kwargs = {k : v for k, v in comp.__dict__.items() if not k.startswith('_')}
            kwargs["category"] = cat.name
            if int(sitem[0]) in [x.id for x in self.components]:
                # update the number of moles and concentration
                sobj = self.select_item("components", 'id', int(sitem[0]))
                sobj.moles = float(sitem[1])
            else:
                kwargs['moles'] = sitem[1]
                obj = Component(**kwargs)
                self.components.append(obj)

        # remove unselected items
        selid = [int(x[0]) for x in selections]
        cat_items = [x for x in self.components if x.id in selid and x.category == category]
        self.components = [x for x in self.components if x.category != category] + cat_items

    def update_reactants(self, selections):

        if any(len(x) != 2 for x in selections):
            raise ValueError("selections should be tuples of length 2")

        for sitem in selections:
            reac, typ = self.session.query(Chemical, Types).\
                    filter(Chemical.typ==Types.id).\
                    filter(Chemical.id==int(sitem[0])).one()
            kwargs = {k : v for k, v in reac.__dict__.items() if not k.startswith('_')}
            kwargs["typ"] = typ.name
            if int(sitem[0]) in [x.id for x in self.reactants]:
                # update the number of moles
                sobj = self.select_item("reactants", "id", int(sitem[0]))
                sobj.concentration = float(sitem[1])
            else:
                kwargs['concentration'] = sitem[1]
                obj = Reactant(**kwargs)
                self.reactants.append(obj)

        # remove unselected items
        selid = [int(x[0]) for x in selections]
        self.reactants = [x for x in self.reactants if x.id in selid]

    def calculate(self):
        '''
        Solve the matrix equation X = B^-1 * A
        '''

        if len(self.components) == 0:
            return (1, "No Zeolite components selected")

        if len(self.reactants) == 0:
            return (2, "No Reactants selected")

        if len(self.components) != len(self.reactants):
            return (3, "Number of zeolite components has to be equal to the " +
                      "number of reactants. " +
                      "You entered {0:<2d} zeolite components and {1:<2d} reactants.".format(\
                              len(self.components), len(self.reactants)))

        # TODO: check if all the zomponents have their sources

        self.A = self.get_A_matrix()
        self.B = self.get_B_matrix()

        try:
            self.X = np.dot(inv(np.transpose(self.B)), self.A)
            # assign calculated masses to the reactants
            for reac, x in zip(self.reactants, self.X):
                if reac.typ == "reactant":
                    reac.mass = x/reac.concentration
                else:
                    reac.mass = x
            return (0, "success")
        except np.linalg.linalg.LinAlgError as err:
            if 'Singular matrix' in err.message:
                print "singular matrix"
            else:
                print "some other error in inversion"
            return (-1, err.message)

    def get_A_matrix(self):
        '''
        Compose the [A] matrix with masses of zeolite components.
        '''

        return np.asarray([z.moles*z.molwt for z in self.components], dtype=float)

    def get_B_matrix(self):
        '''
        Construct and return the batch matrix [B].
        '''

        B = np.zeros((len(self.reactants), len(self.components)), dtype=float)

        for i, reactant in enumerate(self.reactants):
            comps = self.session.query(Batch,DBComponent).\
                    filter(Batch.reactant_id == reactant.id).\
                    filter(DBComponent.id==Batch.component_id).all()
            wfs = self.get_weight_fractions(i, comps)
            for j, comp in enumerate(self.components):
                for cid, wf in wfs:
                    if comp.id == cid:
                        B[i, j] = wf
        return B

    def get_weight_fractions(self, rindex, comps):
        '''
        Calculate the weight fractions corresponding to a specific reactant
        and coupled zolite componts.

        lower case "m": mass in grmas
        upper case "M": molecular weight [gram/mol]
        '''

        res = []

        if self.reactants[rindex].typ == "mixture":
            for batch, comp in comps:
                if comp.formula != "H2O":
                    res.append((comp.id, self.reactants[rindex].concentration))
                else:
                    res.append((comp.id, 1 - self.reactants[rindex].concentration))
            return res

        elif self.reactants[rindex].typ == "solution":
            if len(comps) > 2:
                raise ValueError("cannot handle cases of zeoindexes > 2")

            rct = self.reactants[rindex]

            h2o = self.session.query(Chemical).filter(Chemical.formula=="H2O").one()
            M_solv = h2o.molwt

            M_solu = rct.molwt

            if abs(rct.concentration - 1.0) > 0.0001:
                n_solu = M_solu*M_solv/(M_solv + (1.0-rct.concentration)*M_solu/rct.concentration)/M_solu
                n_solv = M_solu*M_solv/(M_solu + rct.concentration*M_solv/(1.0-rct.concentration))/M_solv
            else:
                n_solu = 1.0
                n_solv = 0.0

            masses = list()

            for batch, comp in comps:
                if comp.formula != "H2O":
                    masses.append(batch.coefficient*n_solu*comp.molwt)
                else:
                    masses.append((batch.coefficient*n_solu + n_solv)*comp.molwt)

            tot_mass = sum(masses)
            for batch, comp in comps:
                if comp.formula != "H2O":
                    res.append((comp.id, batch.coefficient*n_solu*comp.molwt/tot_mass))
                else:
                    res.append((comp.id, (batch.coefficient*n_solu + n_solv)*comp.molwt/tot_mass))
            return res

        elif self.reactants[rindex].typ == "reactant":
            if len(comps) > 1:
                tot_mass = sum([b.coefficient*c.molwt for b, c in comps])
                for batch, comp in comps:
                    res.append((comp.id, batch.coefficient*comp.molwt/tot_mass))
            else:
                res.append((comps[0][1].id, 1.0))
            return res

        else:
            raise ValueError("Unknown reactant typ: {}".format(self.reactants[rindex].typ))

    def rescale_all(self):
        '''
        Rescale all the resulting masses by a factor.
        '''

        res = [(s, s.mass/self.scale_all) for s in self.reactants]
        return res

    def rescale_to(self, sample_selections):
        '''
        Rescale all masses by a factor chosen in such a way that the sum of
        masses of a selected subset of chemicals is equal to the chose sample
        size.
        '''

        masses = [s.mass for s in self.reactants]
        self.sample_scale = sum([masses[i] for i in sample_selections])/float(self.sample_size)
        res = [(s, s.mass/self.sample_scale) for s in self.reactants]
        return res
    
    def print_A(self):

        width = max([len(c.listctrl_label()) for c in self.components] + [_minwidth])
        print "\n     {0:*^{w}s}\n".format("  "+ "Composition Vector [C]" +"  ", w=width+21)
        print " "*5 + "{l:^{wl}}  |{v:^15s}".format(
                    l="Formula", wl=width, v="Mass [g]")
        print " "*5 + "-"*(width+3+15)
        for reac in self.reactants:
            print " "*5+"{l:>{wl}}  |{v:>15.4f}".format(
                    l=reac.listctrl_label(), wl=width, v=reac.mass)

    def print_batch_matrix(self):

        lr = len(self.reactants)

        rowwidth = max([len(c.listctrl_label()) for c in self.components] + [_minwidth])
        colwidth = max([len(r.listctrl_label()) for r in self.reactants] + [_minwidth])

        print "\n{0}{1:*^{w}s}\n".format(" "*7, "  Batch Matrix [B]  ", w=(colwidth+1)*lr+rowwidth)
        print "{}".format(" "*(8+rowwidth))+"|".join(["{0:^{cw}s}".format(c.listctrl_label(), cw=colwidth) for c in self.components])
        print "{}".format(" "*(7+rowwidth))+"{}".format("-"*(colwidth+1)*lr)
        for reac, row in zip(self.reactants, self.B):
            print "     {0:>{w}s}  |".format(reac.listctrl_label(), w=rowwidth)+"|".join("{0:>{w}.4f}    ".format(x, w=colwidth-4) for x in row)

    def parse_formulas(self, string, delimiter=':'):

        cre = re.compile(r'(?P<nmol>(-?\d+\.\d+|-?\d+))?\s*(?P<formula>[A-Za-z0-9\(\)]+)')
        result = []
        for comp in string.replace(" ", "").split(delimiter):
            m = cre.match(comp)
            if m:
                if m.group('nmol') is None:
                    nmol = 1.0
                else:
                    nmol = float(m.group('nmol'))
                result.append((m.group('formula'), nmol))
        return result

In [78]:
m = BatchCalculator()
m.get_component("zgm")


Out[78]:
[<DBComponent(id=10, name='ethanol', formula='C2H5OH')>,
 <DBComponent(id=11, name='ethylene glycol', formula='C2H6O2')>,
 <DBComponent(id=12, name='1-propanol', formula='C3H7OH')>,
 <DBComponent(id=13, name='2-propanol', formula='C3H7OH')>,
 <DBComponent(id=14, name='glycerol', formula='C3H8O3')>,
 <DBComponent(id=15, name='1-butanol', formula='C4H9OH')>,
 <DBComponent(id=16, name='pentaerythritol', formula='C5H12O4')>,
 <DBComponent(id=17, name='dipentaerythritol', formula='(HOCH2)3CCH2OCH2C(CH2OH)3')>,
 <DBComponent(id=18, name='fructose', formula='C6H12O6')>,
 <DBComponent(id=19, name='sucrose', formula='C12H22O11')>,
 <DBComponent(id=20, name='maltose', formula='C12H22O11')>]

In [50]:
m.reset()

In [51]:
rows = set(m.session.query(DBComponent, Batch).filter(Batch.reactant_id==5).filter(DBComponent.id==Batch.component_id).all())
print rows


set([(<DBComponent(id= 3, name='aluminium oxide', formula='Al2O3')>, <Batch(id= 9, reactant_id='    5', component_id='    3', coefficient=    0.50)>), (<DBComponent(id= 5, name='water', formula='H2O')>, <Batch(id=10, reactant_id='    5', component_id='    5', coefficient=   -1.50)>), (<DBComponent(id=13, name='2-propanol', formula='C3H7OH')>, <Batch(id=11, reactant_id='    5', component_id='   13', coefficient=    3.00)>)])

In [52]:
lrows = list(rows)
for item in lrows:
    print item
lrows.sort(key=lambda x: x[0].id, reverse=True)
print 
for item in lrows:
    print item


(<DBComponent(id= 3, name='aluminium oxide', formula='Al2O3')>, <Batch(id= 9, reactant_id='    5', component_id='    3', coefficient=    0.50)>)
(<DBComponent(id= 5, name='water', formula='H2O')>, <Batch(id=10, reactant_id='    5', component_id='    5', coefficient=   -1.50)>)
(<DBComponent(id=13, name='2-propanol', formula='C3H7OH')>, <Batch(id=11, reactant_id='    5', component_id='   13', coefficient=    3.00)>)

(<DBComponent(id=13, name='2-propanol', formula='C3H7OH')>, <Batch(id=11, reactant_id='    5', component_id='   13', coefficient=    3.00)>)
(<DBComponent(id= 5, name='water', formula='H2O')>, <Batch(id=10, reactant_id='    5', component_id='    5', coefficient=   -1.50)>)
(<DBComponent(id= 3, name='aluminium oxide', formula='Al2O3')>, <Batch(id= 9, reactant_id='    5', component_id='    3', coefficient=    0.50)>)

In [53]:
m.reset()

In [79]:
m.update_components("zeolites", [(1, 4.8), (2, 1.0), (3, 1.0), (4, 15.8), (5, 249.5)])
m.components


Out[79]:
[<Component(id= 1, name='   sodium oxide', formula='           Na2O', moles=    4.80)>,
 <Component(id= 2, name='potassium oxide', formula='            K2O', moles=    1.00)>,
 <Component(id= 3, name='aluminium oxide', formula='          Al2O3', moles=    1.00)>,
 <Component(id= 4, name='silicone dioxide', formula='           SiO2', moles=   15.80)>,
 <Component(id= 5, name='          water', formula='            H2O', moles=  249.50)>]

In [80]:
m.update_reactants([(1, 0.98), (2, 0.87), (5, 1.0), (9, 1.0), (10, 1.0)])
m.reactants


Out[80]:
[<Reactant(id= 1, name='sodium hydroxide', formula='NaOH')>,
 <Reactant(id= 2, name='potassium hydroxide', formula='KOH')>,
 <Reactant(id= 5, name='aluminium isopropoxide', formula='Al(OC3H7)3')>,
 <Reactant(id= 9, name='fumed silica', formula='SiO2')>,
 <Reactant(id=10, name='water', formula='H2O')>]

In [81]:
y = m.get_A_matrix()

In [82]:
X = m.get_B_matrix()
X


Out[82]:
array([[ 0.75929763,  0.        ,  0.        ,  0.        ,  0.24070237],
       [ 0.        ,  0.73032389,  0.        ,  0.        ,  0.26967611],
       [ 0.        ,  0.        ,  0.24960577,  0.        , -0.13230604],
       [ 0.        ,  0.        ,  0.        ,  1.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ,  0.        ,  1.        ]])

In [83]:
m.calculate()
m.X


Out[83]:
array([  391.80803265,   128.9783908 ,   408.48928   ,   949.33194   ,
        4419.74648854])

In [84]:
m.print_A()


     *****  Composition Vector [C]  *****

         Formula      |   Mass [g]    
     ---------------------------------
                NaOH  |       391.8080
                 KOH  |       128.9784
           Al(iPrO)3  |       408.4893
                SiO2  |       949.3319
                 H2O  |      4419.7465

In [60]:
m.print_batch_matrix()


       *************************************  Batch Matrix [B]  **************************************

                            Na2O      |      K2O      |     Al2O3     |     SiO2      |      H2O      
                      --------------------------------------------------------------------------------
                NaOH  |     0.7593    |     0.0000    |     0.0000    |     0.0000    |     0.2407    
                 KOH  |     0.0000    |     0.7303    |     0.0000    |     0.0000    |     0.2697    
           Al(iPrO)3  |     0.0000    |     0.0000    |     0.2496    |     0.0000    |    -0.1323    
                SiO2  |     0.0000    |     0.0000    |     0.0000    |     1.0000    |     0.0000    
                 H2O  |     0.0000    |     0.0000    |     0.0000    |     0.0000    |     1.0000    

In [85]:
m.parse_formulas("18.0H2O:34SiO2:88Na2O", delimiter=":")


Out[85]:
[('H2O', 18.0), ('SiO2', 34.0), ('Na2O', 88.0)]

In [49]:
from numpy.linalg import lstsq, solve
solve(X.T, y)


Out[49]:
array([  128.9783908 ,   391.80803265,  4419.74648854,   408.48928   ,
         949.33194   ])

In [31]:
m.reactants


Out[31]:
[<Reactant(id= 2, name='potassium hydroxide', formula='KOH')>,
 <Reactant(id=10, name='water', formula='H2O')>,
 <Reactant(id= 1, name='sodium hydroxide', formula='NaOH')>,
 <Reactant(id= 5, name='aluminium isopropoxide', formula='Al(OC3H7)3')>,
 <Reactant(id= 9, name='fumed silica', formula='SiO2')>]

In [32]:
m.calculate()


Out[32]:
(0, 'success')

In [33]:
m.X


Out[33]:
array([  128.9783908 ,  4419.74648854,   391.80803265,   408.48928   ,
         949.33194   ])

In [34]:
m.B


Out[34]:
array([[ 0.73032389,  0.        ,  0.        ,  0.26967611,  0.        ],
       [ 0.        ,  0.        ,  0.        ,  1.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ,  0.24070237,  0.75929763],
       [ 0.        ,  0.24960577,  0.        , -0.13230604,  0.        ],
       [ 0.        ,  0.        ,  1.        ,  0.        ,  0.        ]])

In [87]:
dbpath = "/home/lmentel/Devel/zeocalc/batchcalc/data/zeolite.db"
engine = create_engine("sqlite:///{path:s}".format(path=dbpath))
DBSession  = sessionmaker(bind=engine)
session = DBSession()

In [10]:
session.query(DBComponent).\
                filter(DBComponent.category == Category.id).\
                filter(Category.name == 'zeolite').all()


Out[10]:
[<DBComponent(id=15, name='sodium oxide', formula='Na2O')>,
 <DBComponent(id=16, name='potassium oxide', formula='K2O')>,
 <DBComponent(id=17, name='aluminium oxide', formula='Al2O3')>,
 <DBComponent(id=18, name='silicone dioxide', formula='SiO2')>,
 <DBComponent(id=19, name='water', formula='H2O')>]

In [89]:
session.query(Chemical).join(Batch).filter(Batch.component_id == 1).all()


Out[89]:
[<Chemical(id= 1, name='sodium hydroxide', formula='NaOH')>,
 <Chemical(id= 3, name='sodium aluminate', formula='Na2Al2O4')>]

In [ ]: