In [1]:
import os
import math
import zipfile
import time
import requests
from tqdm import tqdm
import numpy as np
from glob import glob
import matplotlib.pyplot as plt
import imageio
import skimage.transform
import tensorflow as tf
%matplotlib inline
show_n_images = 25

In [2]:
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot
from PIL import Image
import numpy as np
import math

# Image configuration
IMAGE_HEIGHT = 28
IMAGE_WIDTH = 28
data_dir=r'C:\Users\liori\datasets'
data_files = glob(os.path.join(data_dir, 'celebA/*.jpg'))
shape = len(data_files), IMAGE_WIDTH, IMAGE_HEIGHT, 3

def get_image(image_path, width, height, mode):
    """
    Read image from image_path
    """
    image = Image.open(image_path)

    if image.size != (width, height):
        # Remove most pixels that aren't part of a face
        face_width = face_height = 108
        j = (image.size[0] - face_width) // 2
        i = (image.size[1] - face_height) // 2
        image = image.crop([j, i, j + face_width, i + face_height])
        image = image.resize([width, height], Image.BILINEAR)

    return np.array(image.convert(mode))

def get_batch(image_files, width, height, mode='RGB'):
    """
    Get a single image
    """
    data_batch = np.array(
        [get_image(sample_file, width, height, mode) for sample_file in image_files]).astype(np.float32)

    # Make sure the images are in 4 dimensions
    if len(data_batch.shape) < 4:
        data_batch = data_batch.reshape(data_batch.shape + (1,))

    return data_batch

def get_batches(batch_size):
    """
    Generate batches
    """
    IMAGE_MAX_VALUE = 255


    current_index = 0
    while current_index + batch_size <= shape[0]:
        data_batch = get_batch(
            data_files[current_index:current_index + batch_size],
            *shape[1:3])

        current_index += batch_size

        yield data_batch / IMAGE_MAX_VALUE - 0.5

def images_square_grid(images, mode='RGB'):
    """
    Helper function to save images as a square grid (visualization)
    """
    # Get maximum size for square grid of images
    save_size = math.floor(np.sqrt(images.shape[0]))
    # Scale to 0-255
    images = (((images - images.min()) * 255) / (images.max() - images.min())).astype(np.uint8)
    # Put images in a square arrangement
    images_in_square = np.reshape(
            images[:save_size*save_size],
            (save_size, save_size, images.shape[1], images.shape[2], images.shape[3]))
    # Combine images to grid image
    new_im = Image.new(mode, (images.shape[1] * save_size, images.shape[2] * save_size))
    for col_i, col_images in enumerate(images_in_square):
        for image_i, image in enumerate(col_images):
            im = Image.fromarray(image, mode)
            new_im.paste(im, (col_i * images.shape[1], image_i * images.shape[2]))

    return new_im
        
test_images = get_batch(glob(os.path.join(data_dir, 'celebA/*.jpg'))[:10], 56, 56)
pyplot.imshow(images_square_grid(test_images))


Out[2]:
<matplotlib.image.AxesImage at 0x20d58144860>

In [3]:
import tensorflow as tf

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    """
    inputs_real = tf.placeholder(tf.float32, shape=(None, image_width, image_height, image_channels), name='input_real') 
    inputs_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')
    learning_rate = tf.placeholder(tf.float32, name='learning_rate')
    
    return inputs_real, inputs_z, learning_rate

def discriminator(images, reuse=False):
    """
    Create the discriminator network
    """
    alpha = 0.2
    
    with tf.variable_scope('discriminator', reuse=reuse):
        # using 4 layer network as in DCGAN Paper
        
        # Conv 1
        conv1 = tf.layers.conv2d(images, 32, 5, 2, 'SAME')
        lrelu1 = tf.maximum(alpha * conv1, conv1)
        
        # Conv 2
        conv2 = tf.layers.conv2d(lrelu1, 64, 5, 2, 'SAME')
        batch_norm2 = tf.layers.batch_normalization(conv2, training=True)
        lrelu2 = tf.maximum(alpha * batch_norm2, batch_norm2)
        
        # Conv 3
        conv3 = tf.layers.conv2d(lrelu2, 128, 5, 2, 'SAME')
        batch_norm3 = tf.layers.batch_normalization(conv3, training=True)
        lrelu3 = tf.maximum(alpha * batch_norm3, batch_norm3)
       
        # Flatten
        flat = tf.reshape(lrelu3, (-1, 4*4*128))
        
        # Logits
        logits = tf.layers.dense(flat, 1)
        
        # Output
        out = tf.sigmoid(logits)
        
        return out, logits

In [4]:
def generator(z, out_channel_dim, is_train=True):
    """
    Create the generator network
    """
    alpha = 0.2
    
    with tf.variable_scope('generator', reuse=False if is_train==True else True):
        # First fully connected layer
        x_1 = tf.layers.dense(z, 2*2*128)
        
        # Reshape it to start the convolutional stack
        deconv_2 = tf.reshape(x_1, (-1, 2, 2, 128))
        batch_norm2 = tf.layers.batch_normalization(deconv_2, training=is_train)
        lrelu2 = tf.maximum(alpha * batch_norm2, batch_norm2)
        
        # Deconv 1
        deconv3 = tf.layers.conv2d_transpose(lrelu2, 64, 5, 2, padding='VALID')
        batch_norm3 = tf.layers.batch_normalization(deconv3, training=is_train)
        lrelu3 = tf.maximum(alpha * batch_norm3, batch_norm3)
        
        
        # Deconv 2
        deconv4 = tf.layers.conv2d_transpose(lrelu3, 32, 5, 2, padding='SAME')
        batch_norm4 = tf.layers.batch_normalization(deconv4, training=is_train)
        lrelu4 = tf.maximum(alpha * batch_norm4, batch_norm4)
        
        # Output layer
        logits = tf.layers.conv2d_transpose(lrelu4, out_channel_dim, 5, 2, padding='SAME')
        
        out = tf.tanh(logits)
        
        return out

In [5]:
def model_loss(input_real, input_z, out_channel_dim):
    """
    Get the loss for the discriminator and generator
    """
    
    label_smoothing = 0.9
    
    g_model = generator(input_z, out_channel_dim)
    d_model_real, d_logits_real = discriminator(input_real)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)
    
    d_loss_real = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real,
                                                labels=tf.ones_like(d_model_real) * label_smoothing))
    d_loss_fake = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
                                                labels=tf.zeros_like(d_model_fake)))
    
    d_loss = d_loss_real + d_loss_fake
                                                  
    g_loss = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
                                                labels=tf.ones_like(d_model_fake) * label_smoothing))
    
    
    return d_loss, g_loss

In [6]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    """
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]

    # Optimize
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): 
        d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)

    return d_train_opt, g_train_opt

In [7]:
def images_square_grid(images, mode='RGB'):
    """
    Helper function to save images as a square grid (visualization)
    """
    # Get maximum size for square grid of images
    save_size = math.floor(np.sqrt(images.shape[0]))
    # Scale to 0-255
    images = (((images - images.min()) * 255) / (images.max() - images.min())).astype(np.uint8)
    # Put images in a square arrangement
    images_in_square = np.reshape(
            images[:save_size*save_size],
            (save_size, save_size, images.shape[1], images.shape[2], images.shape[3]))
    # Combine images to grid image
    new_im = Image.new(mode, (images.shape[1] * save_size, images.shape[2] * save_size))
    for col_i, col_images in enumerate(images_in_square):
        for image_i, image in enumerate(col_images):
            im = Image.fromarray(image, mode)
            new_im.paste(im, (col_i * images.shape[1], image_i * images.shape[2]))

    return new_im

def show_generator_output(sess, n_images, input_z, out_channel_dim):
    """
    Show example output for the generator
    """
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    pyplot.imshow(images_square_grid(samples))
    pyplot.show()

In [10]:
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape):
    """
    Train the GAN
    """
    input_real, input_z, _ = model_inputs(data_shape[1], data_shape[2], data_shape[3], z_dim)
    d_loss, g_loss = model_loss(input_real, input_z, data_shape[3])
    d_opt, g_opt = model_opt(d_loss, g_loss, learning_rate, beta1)
    
    steps = 0
    my_session = tf.Session()
    
    with my_session as sess:
        sess.run(tf.global_variables_initializer())
        for epoch_i in range(epoch_count):
            for batch_images in get_batches(batch_size):
                
                # values range from -0.5 to 0.5, therefore scale to range -1, 1
                batch_images = batch_images * 2
                steps += 1
            
                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))
                
                _ = sess.run(d_opt, feed_dict={input_real: batch_images, input_z: batch_z})
                _ = sess.run(g_opt, feed_dict={input_real: batch_images, input_z: batch_z})
                
                if steps % 400 == 0:
                    # At the end of every 10 epochs, get the losses and print them out
                    train_loss_d = d_loss.eval({input_z: batch_z, input_real: batch_images})
                    train_loss_g = g_loss.eval({input_z: batch_z})

                    print("Epoch {}/{}...".format(epoch_i+1, epochs),
                          "Discriminator Loss: {:.4f}...".format(train_loss_d),
                          "Generator Loss: {:.4f}".format(train_loss_g))
                    
                    _ = show_generator_output(sess, 1, input_z, data_shape[3])
    return my_session

In [11]:
batch_size = 16
z_dim = 100
learning_rate = 0.0002
beta1 = 0.5
epochs = 2

with tf.Graph().as_default():
    sess = train(epochs, batch_size, z_dim, learning_rate, beta1, get_batches, shape)


Epoch 1/2... Discriminator Loss: 0.5125... Generator Loss: 1.9325
Epoch 1/2... Discriminator Loss: 0.6089... Generator Loss: 1.5457
Epoch 1/2... Discriminator Loss: 0.9503... Generator Loss: 0.8618
Epoch 1/2... Discriminator Loss: 0.7385... Generator Loss: 1.2557
Epoch 1/2... Discriminator Loss: 0.6682... Generator Loss: 1.5009
Epoch 1/2... Discriminator Loss: 0.9397... Generator Loss: 1.5030
Epoch 1/2... Discriminator Loss: 0.7295... Generator Loss: 1.4261
Epoch 1/2... Discriminator Loss: 0.8523... Generator Loss: 1.6409
Epoch 1/2... Discriminator Loss: 0.5760... Generator Loss: 1.9395
Epoch 1/2... Discriminator Loss: 0.6739... Generator Loss: 1.7440
Epoch 1/2... Discriminator Loss: 0.8680... Generator Loss: 0.9559
Epoch 1/2... Discriminator Loss: 0.6736... Generator Loss: 1.5816
Epoch 1/2... Discriminator Loss: 0.7962... Generator Loss: 1.1654
Epoch 1/2... Discriminator Loss: 0.7329... Generator Loss: 1.2558
Epoch 1/2... Discriminator Loss: 0.6761... Generator Loss: 1.2898
Epoch 1/2... Discriminator Loss: 1.1234... Generator Loss: 0.7158
Epoch 1/2... Discriminator Loss: 0.6049... Generator Loss: 1.5911
Epoch 1/2... Discriminator Loss: 0.8100... Generator Loss: 1.2496
Epoch 1/2... Discriminator Loss: 0.7074... Generator Loss: 1.4123
Epoch 1/2... Discriminator Loss: 0.7370... Generator Loss: 1.2633
Epoch 1/2... Discriminator Loss: 0.5412... Generator Loss: 1.7403
Epoch 1/2... Discriminator Loss: 0.8704... Generator Loss: 1.0646
Epoch 1/2... Discriminator Loss: 0.6632... Generator Loss: 1.6886
Epoch 1/2... Discriminator Loss: 0.6321... Generator Loss: 1.4587
Epoch 1/2... Discriminator Loss: 0.7105... Generator Loss: 1.6518
Epoch 1/2... Discriminator Loss: 0.7372... Generator Loss: 1.3443
Epoch 1/2... Discriminator Loss: 0.7172... Generator Loss: 1.4350
Epoch 1/2... Discriminator Loss: 0.5777... Generator Loss: 1.6800
Epoch 1/2... Discriminator Loss: 0.8858... Generator Loss: 0.9615
Epoch 1/2... Discriminator Loss: 0.8166... Generator Loss: 1.0925
Epoch 1/2... Discriminator Loss: 0.6404... Generator Loss: 1.4312
Epoch 2/2... Discriminator Loss: 0.6971... Generator Loss: 1.3550
Epoch 2/2... Discriminator Loss: 1.0302... Generator Loss: 0.7944
Epoch 2/2... Discriminator Loss: 0.7134... Generator Loss: 1.3541
Epoch 2/2... Discriminator Loss: 0.6290... Generator Loss: 1.5787
Epoch 2/2... Discriminator Loss: 0.6216... Generator Loss: 1.9412
Epoch 2/2... Discriminator Loss: 0.8272... Generator Loss: 1.2921
Epoch 2/2... Discriminator Loss: 0.7840... Generator Loss: 1.1295
Epoch 2/2... Discriminator Loss: 0.7041... Generator Loss: 1.3548
Epoch 2/2... Discriminator Loss: 0.8453... Generator Loss: 1.1012
Epoch 2/2... Discriminator Loss: 0.5183... Generator Loss: 2.1160
Epoch 2/2... Discriminator Loss: 1.0736... Generator Loss: 0.7814
Epoch 2/2... Discriminator Loss: 0.8871... Generator Loss: 1.0863
Epoch 2/2... Discriminator Loss: 0.6230... Generator Loss: 1.7676
Epoch 2/2... Discriminator Loss: 0.6343... Generator Loss: 1.6329
Epoch 2/2... Discriminator Loss: 0.8037... Generator Loss: 1.2559
Epoch 2/2... Discriminator Loss: 0.8202... Generator Loss: 1.1013
Epoch 2/2... Discriminator Loss: 0.7548... Generator Loss: 1.2563
Epoch 2/2... Discriminator Loss: 0.7118... Generator Loss: 1.5989
Epoch 2/2... Discriminator Loss: 0.7059... Generator Loss: 1.5685
Epoch 2/2... Discriminator Loss: 0.7300... Generator Loss: 1.4112
Epoch 2/2... Discriminator Loss: 0.9335... Generator Loss: 1.6284
Epoch 2/2... Discriminator Loss: 0.8962... Generator Loss: 0.9141
Epoch 2/2... Discriminator Loss: 0.4721... Generator Loss: 2.3129
Epoch 2/2... Discriminator Loss: 0.8366... Generator Loss: 1.1098
Epoch 2/2... Discriminator Loss: 0.8801... Generator Loss: 0.9467
Epoch 2/2... Discriminator Loss: 0.7831... Generator Loss: 1.1986
Epoch 2/2... Discriminator Loss: 0.5790... Generator Loss: 1.6435
Epoch 2/2... Discriminator Loss: 0.8552... Generator Loss: 0.9550
Epoch 2/2... Discriminator Loss: 0.6347... Generator Loss: 1.5071
Epoch 2/2... Discriminator Loss: 0.7963... Generator Loss: 1.3820
Epoch 2/2... Discriminator Loss: 0.6540... Generator Loss: 1.7970
Epoch 2/2... Discriminator Loss: 0.5578... Generator Loss: 1.5877

In [24]:



<tensorflow.python.client.session.Session object at 0x0000020D733FAF98>
---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
<ipython-input-24-0c9d454f4fbb> in <module>()
      7 samples = sess.run(
      8         generator(input_z, 3, False),
----> 9         feed_dict={input_z: example_z})
     10 
     11 pyplot.imshow(images_square_grid(samples))

C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)
    885     try:
    886       result = self._run(None, fetches, feed_dict, options_ptr,
--> 887                          run_metadata_ptr)
    888       if run_metadata:
    889         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
   1031     # Check session.
   1032     if self._closed:
-> 1033       raise RuntimeError('Attempted to use a closed Session.')
   1034     if self.graph.version == 0:
   1035       raise RuntimeError('The Session graph is empty.  Add operations to the '

RuntimeError: Attempted to use a closed Session.

In [ ]: