In [1]:
from sympy import *
init_session()
In [16]:
v, w = Function("v")(t), Function("w")(t)
Ii = symbols("I_i")
var('tau a b gamma epsilon p q v_s w_s lambda_')
Out[16]:
In [3]:
I = Ii + tau
In [12]:
dv = (-v*(v-a)*(v-1) - w + I).expand()
dw = (b*(v - gamma*w)).expand()
In [21]:
dv.subs({v: v_s + p*exp(lambda_*t), w: w_s + q*exp(lambda_*t)}).expand()
Out[21]:
In [22]:
dw.subs({v: v_s + p*exp(lambda_*t), w: w_s + q*exp(lambda_*t)}).expand()
Out[22]:
In [23]:
m = Matrix([[-(v-a)*(v-1), -1], [b, -b*gamma]])
In [24]:
m
Out[24]:
In [26]:
m.berkowitz_charpoly()
Out[26]:
In [32]:
expand(b*((diff(x*(x-a)*(x-1), x).expand().subs(x, v) * gamma) + 1))
Out[32]:
In [33]:
expand(diff(x*(x-a)*(x-1), x).expand().subs(x, v) + b*gamma)
Out[33]:
In [ ]: