In [1]:
import os
# import folium
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
import plotly.offline as py
py.init_notebook_mode(connected=True)
import plotly.graph_objs as go
import plotly.tools as tls
import warnings
warnings.filterwarnings('ignore')
# print(folium.__version__)
In [2]:
dfloc = pd.read_csv('kycd_loc.csv', header=9)
dfloc.head()
Out[2]:
In [3]:
dfloc.columns = ['lat', 'lon', 'kycd', 'cnt']
dfloc.head()
Out[3]:
In [4]:
dfloc['lat'] = np.array([float(str(i)[1:]) for i in dfloc.lat.values])
dfloc['lon'] = np.array([float(str(i)[:-1]) for i in dfloc.lon.values])
dfloc.head()
Out[4]:
In [5]:
print( sum(dfloc.isnull().values) )
print( dfloc.shape )
dfloc.describe()
Out[5]:
In [6]:
# dfloc = dfloc[(dfloc.year <= 2015) & (dfloc.year >= 2006)]
In [7]:
dfloc[dfloc.kycd == 351].lat.values
Out[7]:
In [8]:
f, axes = plt.subplots(3, 3, figsize=(10, 10), sharex=True, sharey=True)
s = np.linspace(0, 3, 10)
cmap = sns.cubehelix_palette(start=0.0, light=1, as_cmap=True)
# 341: Petit Larceny
x = dfloc[dfloc.kycd == 341].lon.values
y = dfloc[dfloc.kycd == 341].lat.values
sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=axes[0,0])
axes[0,0].set(ylim=(40.498061, 40.912723), xlim=(-74.255076, -73.700316), title = 'Petit Larceny')
cmap = sns.cubehelix_palette(start=0.333333333333, light=1, as_cmap=True)
# 578: Harrassment 2
x = dfloc[dfloc.kycd == 578].lon.values
y = dfloc[dfloc.kycd == 578].lat.values
sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=axes[0,1])
axes[0,1].set(ylim=(40.498061, 40.912723), xlim=(-74.255076, -73.700316), title = 'Harrassment 2')
cmap = sns.cubehelix_palette(start=0.666666666667, light=1, as_cmap=True)
# 344: Assault 3 & Related Offenses
x = dfloc[dfloc.kycd == 344].lon.values
y = dfloc[dfloc.kycd == 344].lat.values
sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=axes[0,2])
axes[0,2].set(ylim=(40.498061, 40.912723), xlim=(-74.255076, -73.700316), title = 'Assault 3 & Related Offenses')
cmap = sns.cubehelix_palette(start=1.0, light=1, as_cmap=True)
# 351: Criminal Mischief
x = dfloc[dfloc.kycd == 351].lon.values
y = dfloc[dfloc.kycd == 351].lat.values
sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=axes[1,0])
axes[1,0].set(ylim=(40.498061, 40.912723), xlim=(-74.255076, -73.700316), title = 'Criminal Mischief')
cmap = sns.cubehelix_palette(start=1.333333333333, light=1, as_cmap=True)
# 109: Grand Larceny
x = dfloc[dfloc.kycd == 109].lon.values
y = dfloc[dfloc.kycd == 109].lat.values
sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=axes[1,1])
axes[1,1].set(ylim=(40.498061, 40.912723), xlim=(-74.255076, -73.700316), title = 'Grand Larceny')
cmap = sns.cubehelix_palette(start=1.666666666667, light=1, as_cmap=True)
# 235: Dangerous Drugs
x = dfloc[dfloc.kycd == 235].lon.values
y = dfloc[dfloc.kycd == 235].lat.values
sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=axes[1,2])
axes[1,2].set(ylim=(40.498061, 40.912723), xlim=(-74.255076, -73.700316), title = 'Dangerous Drugs')
cmap = sns.cubehelix_palette(start=2.0, light=1, as_cmap=True)
# 361: Offense Against Public Order Sensibility
x = dfloc[dfloc.kycd == 361].lon.values
y = dfloc[dfloc.kycd == 361].lat.values
sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=axes[2,0])
axes[2,0].set(ylim=(40.498061, 40.912723), xlim=(-74.255076, -73.700316), title = 'Offense Against Public Order Sensibility')
cmap = sns.cubehelix_palette(start=2.333333333333, light=1, as_cmap=True)
# 105: Robbery
x = dfloc[dfloc.kycd == 105].lon.values
y = dfloc[dfloc.kycd == 105].lat.values
sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=axes[2,1])
axes[2,1].set(ylim=(40.498061, 40.912723), xlim=(-74.255076, -73.700316), title = 'Robbery')
cmap = sns.cubehelix_palette(start=2.666666666667, light=1, as_cmap=True)
# 107: Burglary
x = dfloc[dfloc.kycd == 107].lon.values
y = dfloc[dfloc.kycd == 107].lat.values
sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=axes[2,2])
axes[2,2].set(ylim=(40.498061, 40.912723), xlim=(-74.255076, -73.700316), title = 'Burglary')
Out[8]:
In [9]:
dfloc
Out[9]:
In [89]:
f, axes = plt.subplots(3, 3, figsize=(10, 10), sharex=True, sharey=True)
s = np.linspace(0, 3, 10)
cmap = sns.cubehelix_palette(start=0.0, light=1, as_cmap=True)
# 341: Petit Larceny
x = dfloc[dfloc.kycd == 341].lon.values
y = dfloc[dfloc.kycd == 341].lat.values
sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=axes[0,0])
axes[0,0].set(ylim=(40.498061, 40.912723), xlim=(-74.255076, -73.700316), title = 'Petit Larceny')
cmap = sns.cubehelix_palette(start=0.333333333333, light=1, as_cmap=True)
# 578: Harrassment 2
x = dfloc[dfloc.kycd == 578].lon.values
y = dfloc[dfloc.kycd == 578].lat.values
sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=axes[0,1])
axes[0,1].set(ylim=(40.498061, 40.912723), xlim=(-74.255076, -73.700316), title = 'Harrassment 2')
cmap = sns.cubehelix_palette(start=0.666666666667, light=1, as_cmap=True)
# 344: Assault 3 & Related Offenses
x = dfloc[dfloc.kycd == 344].lon.values
y = dfloc[dfloc.kycd == 344].lat.values
sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=axes[0,2])
axes[0,2].set(ylim=(40.498061, 40.912723), xlim=(-74.255076, -73.700316), title = 'Assault 3 & Related Offenses')
cmap = sns.cubehelix_palette(start=1.0, light=1, as_cmap=True)
# 351: Criminal Mischief
x = dfloc[dfloc.kycd == 351].lon.values
y = dfloc[dfloc.kycd == 351].lat.values
sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=axes[1,0])
axes[1,0].set(ylim=(40.498061, 40.912723), xlim=(-74.255076, -73.700316), title = 'Criminal Mischief')
cmap = sns.cubehelix_palette(start=1.333333333333, light=1, as_cmap=True)
# 109: Grand Larceny
x = dfloc[dfloc.kycd == 109].lon.values
y = dfloc[dfloc.kycd == 109].lat.values
sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=axes[1,1])
axes[1,1].set(ylim=(40.498061, 40.912723), xlim=(-74.255076, -73.700316), title = 'Grand Larceny')
cmap = sns.cubehelix_palette(start=1.666666666667, light=1, as_cmap=True)
# 235: Dangerous Drugs
x = dfloc[dfloc.kycd == 235].lon.values
y = dfloc[dfloc.kycd == 235].lat.values
sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=axes[1,2])
axes[1,2].set(ylim=(40.498061, 40.912723), xlim=(-74.255076, -73.700316), title = 'Dangerous Drugs')
cmap = sns.cubehelix_palette(start=2.0, light=1, as_cmap=True)
# 361: Offense Against Public Order Sensibility
x = dfloc[dfloc.kycd == 361].lon.values
y = dfloc[dfloc.kycd == 361].lat.values
sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=axes[2,0])
axes[2,0].set(ylim=(40.498061, 40.912723), xlim=(-74.255076, -73.700316), title = 'Offense Against Public Order Sensibility')
cmap = sns.cubehelix_palette(start=2.333333333333, light=1, as_cmap=True)
# 105: Robbery
x = dfloc[dfloc.kycd == 105].lon.values
y = dfloc[dfloc.kycd == 105].lat.values
sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=axes[2,1])
axes[2,1].set(ylim=(40.498061, 40.912723), xlim=(-74.255076, -73.700316), title = 'Robbery')
cmap = sns.cubehelix_palette(start=2.666666666667, light=1, as_cmap=True)
# 107: Burglary
x = dfloc[dfloc.kycd == 107].lon.values
y = dfloc[dfloc.kycd == 107].lat.values
sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=axes[2,2])
axes[2,2].set(ylim=(40.498061, 40.912723), xlim=(-74.255076, -73.700316), title = 'Burglary')
Out[89]:
In [ ]: