In [2]:
import pandas as pd
%matplotlib inline
from sklearn import datasets
from pandas.tools.plotting import scatter_matrix
import matplotlib.pyplot as plt
from sklearn import tree
In [3]:
iris = datasets.load_iris()
In [5]:
iris['feature_names']
Out[5]:
In [6]:
x = iris.data[:,2:]
y = iris.target
In [21]:
def get_class(iris):
if iris['p_width']<= 0.8:
return "class 1"
else:
if iris['p_width'] <= 1.75:
if iris['p_length'] <= 4.95:
if iris['p_width'] <= 1.65:
return "class 2"
else:
return "class 3"
else:
if iris['p_width'] <= 1.55:
return "class 3"
else:
if iris['p_length']<=5.45:
return 'class 2'
else:
return 'class 3'
else:
if iris['p_length']<=4.85:
return "class 3"
else:
return "class 3"
In [22]:
test = {
'p_width': 1.51,
'p_length' : 4.5
}
get_class(test)
Out[22]:
In [ ]: