In [5]:
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.cross_validation import train_test_split
from sklearn import metrics
from sklearn import datasets
from sklearn import tree

In [6]:
iris = datasets.load_iris()

In [7]:
x = iris.data[:,2:]
y = iris.target

In [9]:
train_x, test_x, train_y, test_y = train_test_split(x, y, train_size = .75, test_size = .25)
forest = RandomForestClassifier(n_estimators = 5, random_state = 2)
forest.fit(train_x, train_y)


Out[9]:
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
            max_depth=None, max_features='auto', max_leaf_nodes=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, n_estimators=5, n_jobs=1,
            oob_score=False, random_state=2, verbose=0, warm_start=False)

In [10]:
#Training score
forest.score(train_x, train_y)


Out[10]:
0.9821428571428571

In [11]:
#Test score
forest.score(test_x, test_y)


Out[11]:
0.94736842105263153