In [5]:
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.cross_validation import train_test_split
from sklearn import metrics
from sklearn import datasets
from sklearn import tree
In [6]:
iris = datasets.load_iris()
In [7]:
x = iris.data[:,2:]
y = iris.target
In [9]:
train_x, test_x, train_y, test_y = train_test_split(x, y, train_size = .75, test_size = .25)
forest = RandomForestClassifier(n_estimators = 5, random_state = 2)
forest.fit(train_x, train_y)
Out[9]:
In [10]:
#Training score
forest.score(train_x, train_y)
Out[10]:
In [11]:
#Test score
forest.score(test_x, test_y)
Out[11]: