In [7]:
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.cross_validation import train_test_split
from sklearn import metrics
from sklearn import datasets
from sklearn import tree
In [2]:
iris = datasets.load_iris()
In [3]:
x = iris.data[:,2:]
y = iris.target
In [8]:
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25,train_size=0.75)
In [17]:
forest = RandomForestClassifier(n_estimators=5)
forest.fit(x_train, y_train)
Out[17]:
In [20]:
print("accuracy on training set: %f" % forest.score(x_train, y_train))
print("accuracy on test set: %f" % forest.score(x_test, y_test))
In [ ]: